Main Article Content

Abstract

Breast cancer is the most foremost cause of the most cancer demises in women. In normal cells, BRCA1 and BRCA2 make certain the stability of DNA and also preclude hysterical cell progression. Metamorphosis of these genes is related to the expansion of hereditary breast and ovarian cancers. Bearing in mind the lacunae of consistent and prospective medications to remedy the lifetime intimidating most breast cancers, the present work has attention on molecular docking evaluation to ascertain the prospective binding sites and binding energies of 1-substituted-2-methyl-4-nitroimidazoles, nine protonated 4-nitroimidazolium cations and five aromatic carboxylate anions. Doxorubicin and vinorelbine were also docked with breast cancer protein (PDB code: 3K0K) and the protein binding sites of these standard drugs were also identified. The results exposed that among the docked 4-nitroimdazoles, 4-nitroimidazolium cations and organic anions were found efficient in binding interactions and in wrecking the protein liable towards breast cancer.

Keywords

4-Nitroimidazole 4-Nitroimidazolium salt Benzoate Breast cancer Docking Protein-ligand interaction Computational biology.

Article Details

How to Cite
Satheesh, D., Rajendran, A., & Chithra, K. (2022). Protein-Ligand Binding Interactions of 4-Nitroimidazolium Salts with Breast Cancer Protein: A Computational Biology Study. Asian Journal of Organic & Medicinal Chemistry, 7(2), 163–173. https://doi.org/10.14233/ajomc.2022.AJOMC-P380

References

  1. C. DeSantis, J. Ma, L. Bryan and A. Jemal, Breast Cancer Statistics, 2013, CA Cancer J. Clin., 64, 52 (2014); https://doi.org/10.3322/caac.21203
  2. H. Varmus, The New Era in Cancer Research, Science, 312, 1162 (2006); https://doi.org/10.1126/science.1126758
  3. World Health Organization (WHO), Cancer (2020).
  4. Statistics at a glance: The burden of Cancer in the United Sates. https://www.cancer.gov/about-cancer/understanding/statistics
  5. C.E. DeSantis, S.A. Fedewa, A. Goding Sauer, J.L. Kramer, R.A. Smith and A. Jemal, Breast Cancer Statistics, 2015: Convergence of Incidence Rates between Black and White Women, CA Cancer J. Clin., 66, 31 (2016); https://doi.org/10.3322/caac.21320
  6. M. Ghoncheh, Z. Pournamdar and H. Salehiniya, Incidence and Mortality and Epidemiology of Breast Cancer in the World, Asian Pac. J. Cancer Prev., 17(sup3), 43 (2016); https://doi.org/10.7314/APJCP.2016.17.S3.43
  7. Cancer Fact and Figure American Cancer Society (2017); https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-factsfigures-2017.html (2017) pp 1–71.
  8. Health Care Global Enterprises Ltd, Annual Report On Cancer 2016-2017; http://icmr.nic.in/icmrsql/archive/2016/7.pdf
  9. L.A. Haldosén, C. Zhao and K. Dahlman-Wright, Estrogen Receptor Beta in Breast Cancer, Mol. Cell. Endocrinol., 382, 665 (2014); https://doi.org/10.1016/j.mce.2013.08.005
  10. B.J. Deroo and K.S. Korach, Estrogen Receptors and Human Disease, J. Clin. Invest., 116, 561 (2006); https://doi.org/10.1172/JCI27987
  11. R.A. Magarian, L.B. Overacre, S. Singh and K.L. Meyer, The Medicinal Chemistry of Nonsteroidal Antiestrogens: A Review, Curr. Med. Chem., 1, 61 (1994); https://doi.org/10.2174/0929867301666220210212635
  12. B.H. Mitlak and F.J. Cohen, Selective Estrogen Receptor Modulators, Drugs, 57, 653 (1999); https://doi.org/10.2165/00003495-199957050-00001
  13. C. Descôteaux, V. Leblanc, G. Bélanger, S. Parent, E. Asselin and G. Bérubé, Improved Synthesis of Unique Estradiol-Linked Platinum(II) Complexes Showing Potent Cytocidal Activity and Affinity for the Estrogen Receptor Alpha and Beta, Steroids, 73, 1077 (2008); https://doi.org/10.1016/j.steroids.2008.04.009
  14. S. Adsule, S. Banerjee, F. Ahmed, S. Padhye and F.H. Sarkar, Hybrid Anticancer Agents: Isothiocyanate–Progesterone Conjugates as Chemo-therapeutic Agents and Insights into their Cytotoxicities, Bioorg. Med. Chem. Lett., 20, 1247 (2010); https://doi.org/10.1016/j.bmcl.2009.11.128
  15. J. Ellmén, P. Hakulinen, A. Partanen and D.F. Hayes, Estrogenic Effects of Toremifene and Tamoxifen in Postmenopausal Breast Cancer Patients, Breast Cancer Res. Treat., 82, 103 (2003); https://doi.org/10.1023/B:BREA.0000003957.54851.11
  16. T.L. Taras, G.T. Wurz and M.W. DeGregorio, In vitro and in vivo Biologic Effects of Ospemifene (FC-1271a) in Breast Cancer, J. Steroid Biochem. Mol. Biol., 77, 271 (2001); https://doi.org/10.1016/S0960-0760(01)00066-8
  17. G. Kaur, M.P. Mahajan, M.K. Pandey, P. Singh, S.R. Ramisetti and A.K. Sharma, Design, Synthesis and Evaluation of Ospemifene Analogs as Anti-breast Cancer Agents, Eur. J. Med. Chem., 86, 211 (2014); https://doi.org/10.1016/j.ejmech.2014.08.050
  18. B.F. Abdel-Wahab, G.E. Awad and F.A. Badria, Synthesis, Antimicrobial, Antioxidant, Anti-hemolytic and Cytotoxic Evaluation of New Imidazole based Heterocycles, Eur. J. Med. Chem., 46, 1505 (2011); https://doi.org/10.1016/j.ejmech.2011.01.062
  19. L. Zhang, X.M. Peng, G.L.V. Damu, R.X. Geng and C.H. Zhou, Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry, Med. Res. Rev., 34, 340 (2014); https://doi.org/10.1002/med.21290
  20. A.K. Jain, V. Ravichandran, M. Sisodiya and R.K. Agrawal, Synthesis and Antibacterial Evaluation of 2-Substituted-4,5-Diphenyl-N-Alkyl Imidazole Derivatives, Asian Pac. J. Trop. Med., 3, 471 (2010); https://doi.org/10.1016/S1995-7645(10)60113-7
  21. X.L. Hu, Z. Xu, M.L. Liu, L.S. Feng and G.D. Zhang, Recent Developments of Coumarin Hybrids as Anti-fungal Agents, Curr. Top. Med. Chem., 17, 3219 (2017); https://doi.org/10.2174/1568026618666171215100326
  22. J. Pandey, V.K. Tiwari, S.S. Verma, V. Chaturvedi, S. Bhatnagar, S. Sinha, A.N. Gaikwad and R.P. Tripathi, Synthesis and Antitubercular Screening of Imidazole Derivatives, Eur. J. Med. Chem., 44, 3350 (2009); https://doi.org/10.1016/j.ejmech.2009.02.013
  23. A. Bistrovic, L. Krstulovic, A. Harej, P. Grbcic, M. Sedic, S. Kostrun, S.K. Pavelic, M. Bajic and S. Raic-Malic, Design, Synthesis and Biological Evaluation of Novel Benzimidazole Amidines as Potent Multi-Target Inhibitors for the Treatment of Non-Small Cell Lung Cancer, Eur. J. Med. Chem., 143, 1616 (2018); https://doi.org/10.1016/j.ejmech.2017.10.061
  24. B.L. Cui, B.L. Zheng, K.L. He and Q.Y. Zheng, Imidazole Alkaloids from Lepidium meyenii, J. Nat. Prod., 66, 1101 (2003); https://doi.org/10.1021/np030031i
  25. V.S. Souza, J.R. Corrêa, P.H.P.R. Carvalho, G.M. Zanotto, G.I. Matiello, B.C. Guido, C.C. Gatto, G. Ebeling, P. F.B. Gonçalves, J. Dupont and B.A.D.Neto, Sens. Actuators, B: Chem., 321, 128530 (2020); https://doi.org/10.1016/j.snb.2020.128530
  26. R. Bonsignore, A. Notaro, A.M.P. Salvo, A. Spinello, G. Fiasconaro, A. Terenzi, F. Giacalone, B.K. Keppler, M. Giuliano, M. Gruttadauria and G. Barone, DNA-Binding and Anticancer Activity of Pyrene-Imidazolium Derivatives, ChemistrySelect, 1, 6755 (2016); https://doi.org/10.1002/slct.201601502
  27. M. Guncheva, K. Paunova, P. Ossowicz, Z. Rozwadowski, E. Janus, K. Idakieva, S. Todinova, Y. Raynova, V. Uzunova, S. Apostolova, R. Tzoneva and D. Yancheva, Rapana thomasiana Hemocyanin Modified with Ionic Liquids with Enhanced Anti Breast Cancer Activity, Int. J. Biol. Macromol., 82, 798 (2016); https://doi.org/10.1016/j.ijbiomac.2015.10.031
  28. A. Aubé, S. Campbell, A.R. Schmitzer, A. Claing and J.F. Masson, Ultra-Low Fouling Methylimidazolium Modified Surfaces for the Detection of HER2 in Breast Cancer Cell Lysates, Analyst, 142, 2343 (2017); https://doi.org/10.1039/C7AN00056A
  29. S.C. Jadhvar, H.M. Kasraliker, S.V. Goswami, A.V. Chakrawar and S.R. Bhusare, One-Pot Synthesis and Evaluation of Anticancer Activity of Polyhydroquinoline Derivatives Catalyzed by [Msim]Cl, Res. Chem. Intermed., 43, 7211 (2017); https://doi.org/10.1007/s11164-017-3069-2
  30. M. Galluzzi, C. Schulte, P. Milani and A. Podestà, Imidazolium-Based Ionic Liquids Affect Morphology and Rigidity of Living Cells: An Atomic Force Microscopy Study, Langmuir, 34, 12452 (2018); https://doi.org/10.1021/acs.langmuir.8b01554
  31. F. Al-Blewi, N. Rezki, A. Naqvi, H. Qutb Uddin, S. Al-Sodies, M. Messali, M.R. Aouad and S. Bardaweel, A Profile of the in vitro Anti-Tumor Activity and in silico ADME Predictions of Novel Benzothiazole Amide-Functionalized Imidazolium Ionic Liquids, Int. J. Mol. Sci., 20, 2865 (2019); https://doi.org/10.3390/ijms20122865
  32. X.L. Xu, J. Wang, C.L. Yu, W. Chen, Y.C. Li, Y. Li, H.B. Zhang and X.D. Yang, Synthesis and Cytotoxic Activity of Novel 1-((Indol-3-yl)-methyl)-1H-imidazolium salts, Bioorg. Med. Chem. Lett., 24, 4926 (2014);https://doi.org/10.1016/j.bmcl.2014.09.045
  33. D. Satheesh, A. Rajendran, R. Saravanan, S. Kannan and K. Chithra, An Efficient Room Temperature Synthesis of N1 -(4-Substituted benzyl)-2-methyl-4-nitro-1H-imidazoles and N1-Butyl-2-methyl-4-nitro-1H-imidazoles, Iran. J. Org. Chem., 10, 2325 (2018).
  34. D. Satheesh, A. Rajendran, K. Chithra and R. Saravanan, Synthesis of Some New Protic N1-Benzyl/Butyl-2-methyl-4-nitro-1H-imidazol-3-ium salts with 3,5-Diaminobenzoate, 3,5-Dinitrobenzoate, (E)-3-(4-Hydroxy-3-methoxyphenyl)acrylate and 2-Carboxy-5-nitrobenzoate as Organic Anions, Results Chem., 2, 100033 (2020); https://doi.org/10.1016/j.rechem.2020.100033
  35. D. Satheesh, A. Rajendran, K. Chithra and R. Saravanan, Synthesis and Antimicrobial Evaluation of N1-Benzyl/butyl-2-methyl-4-nitro-3-imidazolium 3¢-chloroperoxy Benzoates, Chem. Data Coll., 28, 100406 (2020); https://doi.org/10.1016/j.cdc.2020.100406
  36. Structure of Doxorubicin, https://pubchem.ncbi.nlm.nih.gov/compound/Doxorubicin#section=Structures
  37. Structure of Vinorelbine, https://pubchem.ncbi.nlm.nih.gov/compound/Vinorelbine#section=Structures.
  38. S.J. Campbell, R.A. Edwards and J.N. Glover, Comparison of the Structures and Peptide Binding Specificities of the BRCT Domains of MDC1 and BRCA1, Structure, 18, 167 (2010); https://doi.org/10.1016/j.str.2009.12.008
  39. S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme and M. Schroeder, PLIP: Fully Automated Protein–Ligand Interaction Profiler, Nucleic Acids Res., 43(W1), W443 (2015); https://doi.org/10.1093/nar/gkv315
  40. D. Satheesh, A. Rajendran and K. Chithra, Protein-Ligand Binding Interactions of Imidazolium Salts with SARS CoV-2, Heliyon, 6, e05544 (2020); https://doi.org/10.1016/j.heliyon.2020.e05544