Main Article Content

Abstract

Chloroquine derivatives were one of the medications tested against the coronavirus pandemic in 2020 and they appeared to be effective. In this present work, (2E,2′E)-2,2′-(propane-1,2-diylidene)bis(N-methylhydrazinecarbothioamide) (PMTSC) has been postulated as a possible antiviral for the treatment of COVID-19 by using 1-Click docking. Compound PMTSC has been synthesized by the condensation reaction between pyruvaldehyde and N-methylthiosemicarbazide. The synthesized PMTSC was confirmed by elemental analysis and NMR spectral study. The binding interaction of PMTSC has been performed with SARS-CoV main protease (PDB code: 2GZ7 and 2GZ8). The docking results showed good binding energies and interactions.

Keywords

Thiosemicarbazone Schiff’s base SARS-CoV Docking Protein-Ligand binding interaction.

Article Details

How to Cite
Sellam, P., Manjunathan, S., Vasanth Kumar, S., Chithra, K., & Satheesh, D. (2022). Synthesis, NMR Studies and Binding Interactions of (2E,2′E)-2,2′-(Propane-1,2-diylidene)bis(N-methylhydrazinecarbothioamide) with SARS-CoV Main Protease. Asian Journal of Organic & Medicinal Chemistry, 7(1), 37–41. https://doi.org/10.14233/ajomc.2022.AJOMC-P359

References

  1. World Health Organization, WHO Coronavirus Disease (COVID-19) Dashboard, https://covid19.who.int/ (Accessed 21 May 2020).
  2. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao and W. Tan, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N. Engl. J. Med., 382, 727 (2020); https://doi.org/10.1056/NEJMoa2001017
  3. D. Wu, T. Wu, Q. Liu and Z. Yang, The SARS-CoV-2 Outbrake: What We Know, Int. J. Infect. Dis., 94, 44 (2020); https://doi.org/10.1016/j.ijid.2020.03.004
  4. R. Hilgenfeld and M. Peiris, From SARS to MERS: 10 years of Research on Highly Pathogenic Human Coronaviruses, Antiviral Res., 100, 286 (2013); https://doi.org/10.1016/j.antiviral.2013.08.015
  5. M. Cascella, M. Rajnik, A. Cuomo, S.C. Dulebohn and R. Di Napoli, Features, Evaluation and Treatment of Coronavirus (COVID-19), StatPearls Publishing, Treasure Island (2022).
  6. A. Abdelmaksoud, M. Vestita, H.S. El-Amawy, E. Ayhan, I. An, M. Öztürk and M. Goldust, Systemic Isotretinoin Therapy in the Era of COVID-19, Dermatol. Ther., 33, e13482 (2020); https://doi.org/10.1111/dth.13482
  7. J. Stebbing, A. Phelan, I. Griffin, C. Tucker, O. Oechsle, D. Smith and P. Richardson, COVID-19: Combining Antiviral and Anti-inflammatory Treatments, Lancet Infect. Dis., 20, 400 (2020); https://doi.org/10.1016/S1473-3099(20)30132-8
  8. M. Tahir Ul Qamar, S.M. Alqahtani, M.A. Alamri and L.L. Chen, Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants, J. Pharm. Anal., 10, 313 (2020); https://doi.org/10.1016/j.jpha.2020.03.009
  9. R. Yu, L. Chen, R. Lan, R. Shen and P. Li, Computational Screening of Antagonists Against the SARS-CoV-2 (COVID-19) Coronavirus by Molecular Docking, Int. J. Antimicrob. Agents, 56, 106012 (2020); https://doi.org/10.1016/j.ijantimicag.2020.106012
  10. R. Yu, L. Chen, R. Lan, R. Shen and P. Li, Computational Screening of Antagonists Against the SARS-CoV-2 (COVID-19) Coronavirus by Molecular Docking, Int. J. Antimicrob. Agents, 56, 106012 (2020); https://doi.org/10.1016/j.ijantimicag.2020.106012
  11. P. Sang, S.H. Tian, Z.H. Meng and L.Q. Yang, Anti-HIV drug Repurposing Against SARS-CoV-2, RSC Adv., 10, 15775 (2020); https://doi.org/10.1039/D0RA01899F
  12. A.A. Elfiky, SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp) Targeting: An in silico Perspective, J. Biomol. Struct. Dyn., 39, 3204 (2021); https://doi.org/10.1080/07391102.2020.1761882
  13. G. Domagk, The Chemotherapy of Tuberculosis with Thiosemicarbazones, Irish J. Med. Sci., 26, 474 (1951); https://doi.org/10.1007/BF02956523
  14. H.H. Vollhaber, Über die Geschichte der Tuberkulosebehandlung, Therapiewoche, 33, 5345 (1979).
  15. Z. Iakovidou, A. Papageorgiou, M.A. Demertzis, E. Mioglou, D. Mourelatos, A. Kotsis, P.N. Yadav and D. Kovala-Demertzi, Platinum(II) and Palladium(II) Complexes with 2-Acetylpyridine Thiosemicarbazone: Cytogenetic and Antineoplastic Effects, Anti-Cancer Drugs Anti-Cancer Drugs, 12, 65 (2001); https://doi.org/10.1097/00001813-200101000-00009
  16. D. Sriram, P. Yogeeswari, P. Dhakla, P. Senthilkumar, D. Banerjee and T.H. Manjashetty, 5-Nitrofuran-2-yl Derivatives: Synthesis and Inhibitory Activities against Growing and Dormant Mycobacterium Species, Bioorg. Med. Chem. Lett., 19, 1152 (2009); https://doi.org/10.1016/j.bmcl.2008.12.088
  17. D. Satheesh and K. Jayanthi, An in vitro Antibacterial and Antifungal Activities of Copper(II) and Zinc(II) Complexes of N4-Methyl-3-thiosemicarbazones, Int. J. Chem. Pharm. Anal., 4, 1179 (2017).
  18. K. Jayanthi and D. Satheesh, Copper(II) Complexes of Schiff Base Tridentate Ligands: Synthesis and their Antimicrobial Activities, World J. Pharm. Res., 6, 1108 (2017).
  19. K. Jayanthi, R.P. Meena, K. Chithra, S. Kannan, W. Shanthi, R. Saravanan, M. Suresh and D. Satheesh, J. Pharm. Chem. Biol. Sci., 5, 205 (2017).
  20. K. Chithra, D. Satheesh, K. Jayanthi, S.V. Kumar, V. Muthulakshmi, K. Kalaivani, R. Saravanan and P. Sellam, Cobalt(II) Complexes of (E)-2-(2-Hydroxy-3-methoxybenzalidene)hydrazinecarbo(thio)amides: Synthesis, FT-IR Studies and their Antimicrobial Activity, Chem. Data Coll., 32, 100652 (2021); https://doi.org/10.1016/j.cdc.2021.100652
  21. A.K. Halve, B. Bhashkar, V. Sharma, R. Bhadauria, A. Kankoriya, A. Soni and K. Tiwari, Synthesis and in vitro Antimicrobial Studies of Some New 3-[Phenyldiazenyl]benzaldehyde N-Phenyl Thiosemicarbazones, J. Enzyme Inhib. Med. Chem., 23, 77 (2008); https://doi.org/10.1080/14756360701408614
  22. X. Du, C. Guo, E. Hansell, P.S. Doyle, C.R. Caffrey, T.P. Holler, J.H. McKerrow and F.E. Cohen, Synthesis and Structure-Activity Relationship Study of Potent Trypanocidal Thio Semicarbazone Inhibitors of the Trypanosomal Cysteine Protease Cruzain, J. Med. Chem., 45, 2695 (2002); https://doi.org/10.1021/jm010459j
  23. I.C. Mendes, L.R. Teixeira, R. Lima, H. Beraldo, N.L. Speziali and D.X. West, Structural and Spectral Studies of Thiosemicarbazones Derived from 3- And 4-formylpyridine and 3- and 4-Acetylpyridine, J. Mol. Struct., 559, 355 (2001); https://doi.org/10.1016/S0022-2860(00)00729-8
  24. V. Mishra, S.N. Pandeya, C. Pannecouque, M. Witvrouw and E. De Clercq, Anti-HIV Activity of Thiosemicarbazone and Semicarbazone Derivatives of (±)-3-Menthone, Arch. Pharm., 335, 183 (2002); https://doi.org/10.1002/1521-4184(200205)335:5<183::AID-ARDP183>3.0.CO;2-U
  25. T.R. Bal, B. Anand, P. Yogeeswari and D. Sriram, Synthesis and Evaluation of Anti-HIV Activity of Isatin b-Thiosemicarbazone Derivatives, Bioorg. Med. Chem. Lett., 15, 4451 (2005); https://doi.org/10.1016/j.bmcl.2005.07.046
  26. S.Y. Abbas, W.M. Basyouni, K.A. El-Bayouki, R.M. Dawood, T.H. Abdelhafez and M.K. Elawady, Efficient sYnthesis and Anti-bovine Viral Diarrhea Virus Evaluation of 5-(Aryldiazo)aalicylaldehyde Thiosemicarbazone Derivatives, Synth. Commun., 49, 2411 (2019); https://doi.org/10.1080/00397911.2019.1626893
  27. I.-L. Lu, N. Mahindroo, P.-H. Liang, Y.-H. Peng, C.-J. Kuo, K.-C. Tsai, H.-P. Hsieh, Y.-S. Chao and S.-Y. Wu, Structure-Based Drug Design and Structural Biology Study of Novel Nonpeptide Inhibitors of Severe Acute Respiratory Syndrome Coronavirus Main Protease, J. Med. Chem., 49, 5154 (2006); https://doi.org/10.1021/jm060207o
  28. D. Satheesh, A. Rajendran and K. Chithra, Protein-Ligand Binding Interactions of Imidazolium Salts with SARS CoV-2, Heliyon, 6, e05544 (2020); https://doi.org/10.1016/j.heliyon.2020.e05544