Main Article Content
Abstract
A new organic compound, N-[4-(1,3-benzothiazol-2-ylcarbamoyl)-phenyl]pyrazine-2-carboxamide was synthesized through the reaction between 4-amino-N-(benzo[d]thiazol-2-yl)benzamide and pyrazine-2-carboxylic acid. The synthesized compound has been characterized by spectroscopic techniques such as 1H NMR, 13C NMR, FT-IR and mass spectroscopy. The synthesized compound was screened to antibacterial (Staphylococcus aureus, Klebsiella pneumonia and Escherichia coli), antifungal (Candida albicans and Aspergillus niger) activities. The anticancer activity of the title compound was also evaluated against MDA-MB-231 breast cancer cells.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- R. Zhang, S. Jin, Y. Wan, S. Lin and Z. Yan, HBr/H2O2-Mediated Formation of C–S Bond with Thiosulfates, Tetrahedron Lett., 59, 841 (2018); https://doi.org/10.1016/j.tetlet.2018.01.055
- P. Tehri, B. Aegurula and R.K. Peddinti, Iodine-Catalyzed Regio-selective Synthesis of b-Hydroxysulfides, Tetrahedron Lett., 58, 2062 (2017); https://doi.org/10.1016/j.tetlet.2017.04.043
- N. Azizi and M. Edrisi, Biodegradable Choline Hydroxide Promoted Environmentally Benign Thiolysis of Epoxides, Tetrahedron Lett., 57, 525 (2016); https://doi.org/10.1016/j.tetlet.2015.12.080
- M.-Y. Chang, Y.-H. Huang and H.-S. Wang, Synthesis of 1,1-Diaryl-ethylenes, Tetrahedron, 72, 3022 (2016); https://doi.org/10.1016/j.tet.2016.04.018
- S.R. Lanke and B.M. Bhanage, Amberlyst-15©: An Efficient Heterogeneous Reusable Catalyst for Selective Anti-Markovnikov Addition of Thiols to Alkenes/Alkynes and for Thiolysis of Epoxides, Catal. Commun., 41, 29 (2013); https://doi.org/10.1016/j.catcom.2013.06.032
- T. Sato, Y. Okumura, J. Itai and T. Fujisawa, (S)-b,w-Dihydroxyalkyl Phenyl Sulfones. Synthesis by Bakers Yeast Reduction and Use as Precursors of Optically Active Lactones, Chem. Lett., 17, 1537 (1988); https://doi.org/10.1246/cl.1988.1537
- R. Tanikaga, K. Hosoya and A. Kaji, Synthesis of Enantiomerically Pure 2,5-Disubstituted Tetrahydrofurans using Readily Prepared (2S)-1-phenylsulphonylalkan-2-ols, J. Chem. Soc. Perkin Trans. I, 1799 (1987); https://doi.org/10.1039/p19870001799
- J. Otera, H. Misawa and K. Sugimoto, Mechanistic Aspects and Profiles of the Double Elimination Reaction of b-Substituted Sulfones, J. Org. Chem., 51, 3830 (1986); https://doi.org/10.1021/jo00370a016
- A. El-Awa, M.N. Noshi, X.M. Du Jourdin and P.L. Fuchs, Chem. Rev., 109, 2315 (2009); https://doi.org/10.1021/cr800309r
- A. York, Rewiring Cellular Dynamics and Metabolism, Nat. Rev. Microbiol., 15, 576 (2017); https://doi.org/10.1038/nrmicro.2017.114
- N.C. Desai, D. Pandya and D. Vaja, Synthesis and Antimicrobial Activity of Some Heterocyclic Compounds bearing Benzimidazole and Pyrazoline Motifs, Med. Chem. Res., 27, 52 (2018); https://doi.org/10.1007/s00044-017-2040-5
- U.N. Sekar, B.B.N. Padalkar, V.D. Gupta, K.R. Pharangare, V.S. Patil and P.G. Umape, Oxidation of Thioacids by Quinaldinium Fluoro-chromate, Arab. J. Chem., 9, S1125 (2016); https://doi.org/10.1016/j.arabjc.2013.11.022
- Q.A. Mckellar and E.W. Scott, The Benzimidazole Anthelmintic Agents-A Review, J. Vet. Pharmacol. Ther., 13, 223 (1990); https://doi.org/10.1111/j.1365-2885.1990.tb00773.x
- L. Garuti, M. Roberti, M. Malagoli, T. Rossi and M. Castelli, Synthesis and Antiproliferative Activity of Some Benzimidazole-4,7-dione Derivatives, Bioorg. Med. Chem. Lett., 10, 2193 (2000); https://doi.org/10.1016/S0960-894X(00)00429-7
- S.I. Alaqeel, Synthetic Approaches to Benzimidazoles from o-Phenyl-enediamine: A Literature Review, J. Saudi Chem. Soc., 21, 229 (2017); https://doi.org/10.1016/j.jscs.2016.08.001
- A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck, Antibiotic Susceptibility Testing by a Standardized Single Disk Method, J. Am. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
- C. Perez and C. Anesini, in vitro Antibacterial Activity of Argentine Folk Medicinal Plants against Salmonella typhi, J. Ethnopharmacol., 44, 41 (1994); https://doi.org/10.1016/0378-8741(94)90097-3
References
R. Zhang, S. Jin, Y. Wan, S. Lin and Z. Yan, HBr/H2O2-Mediated Formation of C–S Bond with Thiosulfates, Tetrahedron Lett., 59, 841 (2018); https://doi.org/10.1016/j.tetlet.2018.01.055
P. Tehri, B. Aegurula and R.K. Peddinti, Iodine-Catalyzed Regio-selective Synthesis of b-Hydroxysulfides, Tetrahedron Lett., 58, 2062 (2017); https://doi.org/10.1016/j.tetlet.2017.04.043
N. Azizi and M. Edrisi, Biodegradable Choline Hydroxide Promoted Environmentally Benign Thiolysis of Epoxides, Tetrahedron Lett., 57, 525 (2016); https://doi.org/10.1016/j.tetlet.2015.12.080
M.-Y. Chang, Y.-H. Huang and H.-S. Wang, Synthesis of 1,1-Diaryl-ethylenes, Tetrahedron, 72, 3022 (2016); https://doi.org/10.1016/j.tet.2016.04.018
S.R. Lanke and B.M. Bhanage, Amberlyst-15©: An Efficient Heterogeneous Reusable Catalyst for Selective Anti-Markovnikov Addition of Thiols to Alkenes/Alkynes and for Thiolysis of Epoxides, Catal. Commun., 41, 29 (2013); https://doi.org/10.1016/j.catcom.2013.06.032
T. Sato, Y. Okumura, J. Itai and T. Fujisawa, (S)-b,w-Dihydroxyalkyl Phenyl Sulfones. Synthesis by Bakers Yeast Reduction and Use as Precursors of Optically Active Lactones, Chem. Lett., 17, 1537 (1988); https://doi.org/10.1246/cl.1988.1537
R. Tanikaga, K. Hosoya and A. Kaji, Synthesis of Enantiomerically Pure 2,5-Disubstituted Tetrahydrofurans using Readily Prepared (2S)-1-phenylsulphonylalkan-2-ols, J. Chem. Soc. Perkin Trans. I, 1799 (1987); https://doi.org/10.1039/p19870001799
J. Otera, H. Misawa and K. Sugimoto, Mechanistic Aspects and Profiles of the Double Elimination Reaction of b-Substituted Sulfones, J. Org. Chem., 51, 3830 (1986); https://doi.org/10.1021/jo00370a016
A. El-Awa, M.N. Noshi, X.M. Du Jourdin and P.L. Fuchs, Chem. Rev., 109, 2315 (2009); https://doi.org/10.1021/cr800309r
A. York, Rewiring Cellular Dynamics and Metabolism, Nat. Rev. Microbiol., 15, 576 (2017); https://doi.org/10.1038/nrmicro.2017.114
N.C. Desai, D. Pandya and D. Vaja, Synthesis and Antimicrobial Activity of Some Heterocyclic Compounds bearing Benzimidazole and Pyrazoline Motifs, Med. Chem. Res., 27, 52 (2018); https://doi.org/10.1007/s00044-017-2040-5
U.N. Sekar, B.B.N. Padalkar, V.D. Gupta, K.R. Pharangare, V.S. Patil and P.G. Umape, Oxidation of Thioacids by Quinaldinium Fluoro-chromate, Arab. J. Chem., 9, S1125 (2016); https://doi.org/10.1016/j.arabjc.2013.11.022
Q.A. Mckellar and E.W. Scott, The Benzimidazole Anthelmintic Agents-A Review, J. Vet. Pharmacol. Ther., 13, 223 (1990); https://doi.org/10.1111/j.1365-2885.1990.tb00773.x
L. Garuti, M. Roberti, M. Malagoli, T. Rossi and M. Castelli, Synthesis and Antiproliferative Activity of Some Benzimidazole-4,7-dione Derivatives, Bioorg. Med. Chem. Lett., 10, 2193 (2000); https://doi.org/10.1016/S0960-894X(00)00429-7
S.I. Alaqeel, Synthetic Approaches to Benzimidazoles from o-Phenyl-enediamine: A Literature Review, J. Saudi Chem. Soc., 21, 229 (2017); https://doi.org/10.1016/j.jscs.2016.08.001
A.W. Bauer, W.M.M. Kirby, J.C. Sherris and M. Turck, Antibiotic Susceptibility Testing by a Standardized Single Disk Method, J. Am. Clin. Pathol., 45(4_ts), 493 (1966); https://doi.org/10.1093/ajcp/45.4_ts.493
C. Perez and C. Anesini, in vitro Antibacterial Activity of Argentine Folk Medicinal Plants against Salmonella typhi, J. Ethnopharmacol., 44, 41 (1994); https://doi.org/10.1016/0378-8741(94)90097-3