Main Article Content

Abstract

The functionalization of organic molecules with the Schiff bases having benzothiazole moiety has grown rapidly due to its multiple therapeutic and pharmacological properties. They have driven enormous studies on their stereochemistry, bioactivity and synthetic attempts. The benzothiazole moiety is infinitesimal but broadly used for industrial purposes and also exhibits a broad range of biological activities. Study carried out on Schiff bases having benzothiazole had well-known promising activities like antimicrobial, antimalarial, antifungal, antitubercular, antiviral, antitumor, analgesic, anti-inflammatory and many more. This review brings forward a systematic and comprehensive survey of the reactivity and biological properties associated with the Schiff bases-benzothiazole derivatives and their analogs.

Keywords

Benzothiazoles Biological activities Heterocycles Schiff base Thiazole Synthesis.

Article Details

How to Cite
Ratnakar Baraskar, A., P. Sonawane, R., Kshirsagar, N., & Pathan, S. (2022). Biological Activities of Schiff Bases Incorporating Benzothiazole Moiety. Asian Journal of Organic & Medicinal Chemistry, 7(3), 249–264. https://doi.org/10.14233/ajomc.2022.AJOMC-P392

References

  1. S.I. Pathan, N.S. Chundawat, N.P.S. Chauhan, G.P. Singh, A Review on Synthetic Approaches of Heterocycles via Insertion-Cyclization Reaction, Synth. Commun., 50, 1251 (2020); https://doi.org/10.1080/00397911.2020.1712609
  2. S. Cherukupalli, B. Chandrasekaran, V. Krystof, R.R. Aleti, N. Sayyad, S.R. Merugu, N.D. Kushwaha and R. Karpoormath, Synthesis, Anticancer Evaluation, And Molecular Docking Studies of Some Novel 4,6-Disubstituted Pyrazolo[3,4-d]pyrimidines as Cyclin-Dependent Kinase 2 (Cdk2) Inhibitors, Bioorg. Chem., 79, 46 (2018); https://doi.org/10.1016/j.bioorg.2018.02.030
  3. H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen, Ann. der Chem., 131, 118 (1864); https://doi.org/10.1002/jlac.18641310113
  4. T.A. Nibil, T.K. Shameera Ahamed, P.P. Soufeena, K. Muraleedharan, P. Periyat and K.K. Aravindakshan, Results Chem., 2, 100062 (2020); https://doi.org/10.1016/j.rechem.2020.100062
  5. R.S. Keri, M.R. Patil, S.A. Patil and S. Budagumpi, A Comprehensive Review in Current Developments of Benzothiazole-based Molecules in Medicinal Chemistry, Eur. J. Med. Chem., 89, 207 (2015); https://doi.org/10.1016/j.ejmech.2014.10.059
  6. J. Akhtar, A.A. Khan, Z. Ali, R. Haider and M.S. Yar, Structure-Activity Relationship (SAR) Study and Design Strategies of Nitrogen-containing Heterocyclic Moieties for their Anticancer Activities, Eur. J. Med. Chem., 125, 143 (2017); https://doi.org/10.1016/j.ejmech.2016.09.023
  7. B. Soni, M.S. Ranawat, R. Sharma, A. Bhandari and S. Sharma, Synthesis and Evaluation of Some New Benzothiazole Derivatives as Potential Antimicrobial Agents, Eur. J. Med. Chem., 45, 2938 (2010); https://doi.org/10.1016/j.ejmech.2010.03.019
  8. S. Maddila, S. Gorle, N. Seshadri, P. Lavanya and S.B. Jonnalagadda, Synthesis, Antibacterial and Antifungal Activity of Novel Benzothiazole Pyrimidine Derivatives, Arab. J. Chem., 9, 681 (2016); https://doi.org/10.1016/j.arabjc.2013.04.003
  9. P.P. Prabhu, C.S. Shastry, S.S. Pande and T.P. Selvam, Design, Synthesis, Characterization and Biological Evaluation of Benzothiazole-6-Carboxylate Derivatives, Res. Pharmacy, 1, 6 (2015).
  10. N.G. Parvathy, P. Manju, M. Mukesh and T. Leena, Design, Synthesis and Molecular Docking Studies of Benzothiazole Derivatives as Antimicrobial Agents, Int. J. Pharm. Pharm. Sci., 5, 101 (2013).
  11. C.J. Patil, M.C. Patil, M.C. Patil and S.N. Patil, Azomethines and Biological Screening: Part-2. Evaluation of Biological Properties of Schiff Bases from 2-Aminobenzothiazoles and 4-Chlorobenzaldehyde, J. Chem. Biol. Phys. Sci., 6A, 220 (2016).
  12. P.K. Shinde and K.T. Waghamode, Synthesis, Characterization and Antibacterial Activity of Substituted Benzothiazole Derivatives, Int. J. Sci. Res. Publ., 7, 365 (2017).
  13. P.P. Prabhu, S. Pande and C.S. Shastry, Synthesis and Biological Evaluation of Schiff’s Bases of Some New Benzothiazole Derivatives as Antimicrobial Agents, Int. J. Chem. Tech. Res., 3, 185 (2011).
  14. J. Ceramella, D. Iacopetta, A. Catalano, F. Cirillo, R. Lappano and M.S. Sinicropi, Antibiotics, 11, 191 (2022); https://doi.org/10.3390/antibiotics11020191
  15. R. Kumar, U. Kalidhar, A. Kaur and P. Kaur, Synthesis, Spectral Studies and Biological Evaluation of Schiff Base Derivatives of Benzothiazole for Antimicrobial Activity, Res. J. Pharm. Biol. Chem. Sci., 3, 847 (2012).
  16. K.G. Desai and K.R. Desai, Synthesis of Some Novel Pharmacologically Active Schiff Bases using Microwave Method and their Derivatives Formazans by Conventional Method, Indian J. Chem., 44B, 2097 (2005).
  17. S. Bondock, W. Fadaly and M. Metwally, Synthesis and Antimicrobial Activity of Some New Thiazole, Thiophene and Pyrazole Derivatives Containing Benzothiazole Moiety, Eur. J. Med. Chem., 45, 3692 (2010); https://doi.org/10.1016/j.ejmech.2010.05.018
  18. M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary, M.M. El-Kerdawy, N. Ni and M.I. Shaaban, Synthesis, Antimicrobial, Antiquorum-Sensing And Cytotoxic Activities of New Series of Benzothiazole Derivatives, Chin. Chem. Lett., 26, 1522 (2015); https://doi.org/10.1016/j.cclet.2015.09.004
  19. G. Alang, R. Kaur, G. Kaur, A. Singh and P. Singla, Synthesis and Antibacterial Activity of Some New Benzothiazole Derivatives, Acta Pharm. Sci., 52, 213 (2010).
  20. A. Pandurangan, A. Sharma, N. Sharma, P.K. Sharma and S. Visht, Synthesis and Structural Studies of Novel Benzothiazole Derivative and Evaluation of their Antimicrobial Activity, Der Pharma Chem., 2, 316 (2010).
  21. G. Alang, R. Kaur, A. Singh, P. Budhlakoti, A. Singh and R. Sanwal Synthesis, Characterization and Antibacterial Activity of Certain (E)-1-(1-(Substituted phenyl)ethylidene)-2-(6-methoxybenzo[d]thiazol-2-yl)hydrazine Analogues, Int. J. Pharm. Biol. Arch., 1, 56 (2010).
  22. G. Alang, G. Kaur, R. Kaur, A. Singh and R. Tiwari, Synthesis, Characterization, and Biological Evaluation of Certain 6-Methyl-2(3H)-benzo-1, 3-thiazolyl-1¢-ethylidene-2-(o, p- Substituted Acetophenones) Hydrazine Analogs, J. Young Pharmacists, 2, 394 (2010); https://doi.org/10.4103/0975-1483.71636
  23. N. Siddiqui, A. Rana, S.A. Khan, M.A. Bhat and S.E. Haque, Synthesis of Benzothiazole Semicarbazones as Novel Anticonvulsants-The Role of Hydrophobic Domain, Bioorg. Med. Chem. Lett., 17, 4178 (2007); https://doi.org/10.1016/j.bmcl.2007.05.048
  24. F. Azam, I.A. Alkskas, S.L. Khokra and O. Prakash, Synthesis of Some Novel N4-(Naphtha[1,2-d]thiazol-2-yl)semicarbazides as Potential Anticonvulsants, Eur. J. Med. Chem., 44, 203 (2009); https://doi.org/10.1016/j.ejmech.2008.02.007
  25. P. Kumar, B. Shrivastava, S.N. Pandeya, L. Tripathi and J.P. Stables, Design, Synthesis, and Anticonvulsant Evaluation of Some Novel 1,3- Benzothiazol-2-yl Hydrazones/Acetohydrazones, Med. Chem. Res., 21, 2428 (2012); https://doi.org/10.1007/s00044-011-9768-0
  26. R. Shukla, A.P. Singh, P.K. Sonar, M. Mishra and S.K. Saraf, Schiff Bases of Benzothiazol-2-ylamine and Thiazolo[5,4-b]pyridin-2-ylamine as Anticonvulsants: Synthesis, Characterization and Toxicity Profiling, Cent. Nerv. Syst. Agents Med. Chem., 16, 240 (2016); https://doi.org/10.2174/1871524916666160428110728
  27. P. Yogeeswari, D. Sriram, S. Mehta, D. Nigam, M.M. Kumar, S. Murugesan and J.P. Stables, Anticonvulsant and Neurotoxicity Evaluation of Some 6-Substituted Benzothiazolyl-2-thiosemicarbazones, Il Farmaco, 60, 1 (2005); https://doi.org/10.1016/j.farmac.2004.09.001
  28. H. Wang, J.A. Kulas, C. Wang, D.M. Holtzman, H.A. Ferris and S.B. Hansen, Regulation of b-Amyloid Production in Neurons by Astrocyte-Derived Cholesterol, Proc. Natl. Acad. Sci. USA, 118, e2102191118 (2021); https://doi.org/10.1073/pnas.2102191118
  29. M. Jadhao, C. Das, A. Rawat, H. Kumar, R. Joshi, S. Maiti and S.K. Ghosh, Development of Multifunctional Heterocyclic Schiff Base as a Potential Metal Chelator: A Comprehensive Spectroscopic Approach Towards Drug Discovery, J. Biol. Inorg. Chem., 22, 47 (2017); https://doi.org/10.1007/s00775-016-1407-2
  30. J. Geng, M. Li, L. Wu, J. Ren and X. Qu, Liberation of Copper from Amyloid Plaques: Making a Risk Factor Useful for Alzheimer’s Disease Treatment, J. Med. Chem., 55, 9146 (2012); https://doi.org/10.1021/jm3003813
  31. V. Kachwal, I.S. Vamsi Krishna, L. Fageria, J. Chaudhary, R. Kinkar Roy, R. Chowdhury and I.R. Laskar, Exploring the Hidden Potential of a Benzothiazole-based Schiff-Base Exhibiting AIE and ESIPT and Its Activity in pH Sensing, Intracellular Imaging and Ultrasensitive & Selective Detection of Aluminium (Al3+), Analyst, 143, 3741 (2018); https://doi.org/10.1039/C8AN00349A
  32. J. Ma, G. Hu, L. Xie, L. Chen, B. Xu and P. Gong, Design, Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives Bearing Semicarbazone Moiety as Antitumor Agents, Chem. Res. Chin. Univ., 31, 958 (2015); https://doi.org/10.1007/s40242-015-5034-1
  33. D. Osmaniye, S. Levent, A. Karaduman, S. Ilgin, Z. Kaplancikli and Y. Özkay, Synthesis of New Benzothiazole Acylhydrazones as Anticancer Agents, Molecules, 23, 1054 (2018); https://doi.org/10.3390/molecules23051054
  34. J. Ma, D. Chen, K. Lu, L. Wang, X. Han, Y. Zhao and P. Gong, Design, Synthesis and Structure–Activity Relationships of Novel Benzothiazole Derivatives Bearing the ortho-hydroxy N-carbamoylhydrazone Moiety as Potent Antitumor Agents, Eur. J. Med. Chem., 86, 257 (2014); https://doi.org/10.1016/j.ejmech.2014.08.058
  35. T.B. Shaik, S.M.A. Hussaini, V.L. Nayak, M.L. Sucharitha, M.S. Malik and A. Kamal, Rational Design and Synthesis of 2-Anilinopyridinyl-benzothiazole Schiff Bases as Antimitotic Agents, Bioorg. Med. Chem. Lett., 27, 2549 (2017); https://doi.org/10.1016/j.bmcl.2017.03.089
  36. M.A. Abdelgawad, P.F. Lamie and O.M. Ahmed, Synthesis of New Quinolone Derivatives Linked to Benzothiazole or Benzoxazole Moieties as Anticancer and Antioxidant Agents, Med. Chem., 6, 652 (2016); https://doi.org/10.4172/2161-0444.1000410
  37. J. Ma, G. Bao, L. Wang, W. Li, B. Xu, B. Du, J. Lv, X. Zhai and P. Gong, Design, Synthesis, Biological Evaluation and Preliminary Mechanism Study of Novel Benzothiazole Derivatives Bearing Indole-based Moiety as Potent Antitumor Agents, Eur. J. Med. Chem., 96, 173 (2015); https://doi.org/10.1016/j.ejmech.2015.04.018
  38. L.C. Cabrera-Perez, I.I. Padilla-Martinez, A. Cruz, J.E. Mendieta-Wejebe, F. Tamay-Cach and M.C. Rosales-Hernandez, Evaluation of a New Benzothiazole Derivative with Antioxidant Activity in the Initial Phase of Acetaminophen Toxicity, Arab. J. Chem., 12, 3871 (2019); https://doi.org/10.1016/j.arabjc.2016.02.004
  39. M.A. Arafath, F. Adam, F.S.R. Al-Suede, M.R. Razali, M.B.K. Ahamed, A.M.S. Abdul Majid, M.Z. Hassan, H. Osman and S. Abubakar, Synthesis, Characterization, X-Ray Crystal Structures of Heterocyclic Schiff Base Compounds and in vitro Cholinesterase Inhibition and Anticancer Activity, J. Mol. Struct., 1149, 216 (2017); https://doi.org/10.1016/j.molstruc.2017.07.092
  40. M. Singh, S. Kumar Singh, B. Thakur, P. Ray and S.K. Singh, Design and Synthesis of Novel Schiff Base-Benzothiazole Hybrids as Potential Epidermal Growth Factor Receptor (EGFR) Inhibitors, Anticancer. Agents Med. Chem., 16, 722 (2016); https://doi.org/10.2174/1871520615666151007160115
  41. S. Chacko and S. Samanta, A Novel Approach towards Design, Synthesis and Evaluation of Some Schiff Base Analogues of 2-Amino-pyridine and 2-Aminobezothiazole against Hepatocellular Carcinoma, Biomed. Pharmacother., 89, 162 (2017); https://doi.org/10.1016/j.biopha.2017.01.108
  42. K. Shanthalakshmi, M. Bhat and S.L. Belagali, Synthesis of Benzothiazole Schiff’s Bases and Screening for the Antioxidant Activity, World J. Pharm. Res., 6, 610 (2017).
  43. J. Ma, G. Zhang, X. Han, G. Bao, L. Wang, X. Zhai and P. Gong, Synthesis and Biological Evaluation of Benzothiazole Derivatives Bearing the ortho-Hydroxy-N-acylhydrazone Moiety as Potent Antitumor Agents, Arch Pharm. Chem. Life Sci., 347, 936 (2014); https://doi.org/10.1002/ardp.201400230
  44. M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary, M.M. El-Kerdawy and N. Ni, Synthesis, in vitro Antitumor Activity and Molecular Modeling Studies of a New Series of Benzothiazole Schiff Bases, Chin. Chem. Lett., 27, 380 (2016); https://doi.org/10.1016/j.cclet.2015.12.033
  45. R. Priyadharsini, S.A. Jerad, M. Sathish, S. Kavitha and T.C. Selvin, Docking, Synthesis, Characterization and Evaluation of Novel CDK2 Inhibitors: Benzothiazole Derivatives, Int. J. Pharm. Pharm. Sci., 4, 574 (2012).
  46. M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary and M.M. El-Kerdawy, New Series of Benzothiazole and Pyrimido[2,1-b]benzothiazole Derivatives: Synthesis, Antitumor Activity, EGFR Tyrosine Kinase Inhibitory Activity and Molecular Modeling Studies, Med. Chem. Res., 24, 860 (2015); https://doi.org/10.1007/s00044-014-1114-x
  47. M.T. Gabr, N.S. El-Gohary, E.R. El-Bendary and M.M. El-Kerdawy, Eur. J. Med. Chem., 85, 576 (2014); https://doi.org/10.1016/j.ejmech.2014.07.097
  48. B. Kumari, K. Chauhan, J. Trivedi, V. Jaiswal, S.S. Kanwar and Y.R. Pokharel, Benzothiazole-Based-Bioconjugates with Improved Anti-microbial, Anticancer and Antioxidant Potential, ChemistrySelect, 3, 11326 (2018); https://doi.org/10.1002/slct.201801936
  49. S. Saipriya, D.A. Prakash, S.G Kini, V. Bhatt, G.K.S. Ranganath Pai, S. Biswas and M. Shameer, Design, Synthesis, Antioxidant and Anticancer Activity of Novel Schiff’s Bases of 2-Amino Benzothiazole, Indian J. Pharm. Educ. Res., 52, S333 (2018); https://doi.org/10.5530/ijper.52.4s.114
  50. R. Abdel-Jalil, T. Al-Harthy, W. Zoghaib, M. Pflüger, E. Hofmann and H. Hundsberger, Design and Synthesis of Benzothiazole Schiff Bases of Potential Antitumor Activitiy, Heterocycles, 92, 1282 (2016); https://doi.org/10.3987/COM-16-13471
  51. J. Benavides, J.C. Camelin, N. Mitrani, F. Flamand, A. Uzan, J.J. Legrand, C. Guereny and G. LeFur, 2-Amino-6-trifluoromethoxybenzothiazole, Possible Antagonist of Excitatory Amino Acid Neurotransmission. 2. Biochemical Properties, Neuropharmacology, 24, 1085 (1985).
  52. S.R. Pattan, S.N.N. Babu and J. Angadi, Synthesis and Biological Activity of 2-amino[5¢-(4¢-sulphonyl benzylidene)-2,4-thiazolidine dione]-7-(substituted)-6-fluoro Benzothiazoles, Indian J. Heterocycl. Chem., 11, 333 (2002).
  53. N. Uremis, M.M. Uremis, F.I. Tolun, M. Ceylan, A. Doganer and A.H. Kurt, Synthesis of 2-Substituted Benzothiazole Derivatives and their in vitro Anticancer Effects and Antioxidant Activities Against Pancreatic Cancer Cells, Anticancer Res., 37, 6381 (2017); https://doi.org/10.21873/anticanres.12091
  54. M.A. Almehmadi, A. Aljuhani, S.Y. Alraqa, I. Ali, N. Rezki, M.R. Aouad and M. Hagar, Design, Synthesis, DNA Binding, Modeling, Anticancer Studies and DFT Calculations of Schiff Bases Tethering Benzothiazole-1,2,3-triazole Conjugates, J. Mol. Struct., 1225, 129148 (2021); https://doi.org/10.1016/j.molstruc.2020.129148
  55. A.H. Halawa, S.M.A. El-Gilil, A.H. Bedair, M. Shaaban, M. Frese, N. Sewald, E.M. Eliwa and A.M. El-Agrody, Synthesis, Biological Activity and Molecular Modeling Study of New Schiff Bases Incorporated with Indole Moiety, Z. Naturforschung C, 72, 467 (2017); https://doi.org/10.1515/znc-2017-0025
  56. M. Shakir, S. Hanif, M.A. Sherwani, O. Mohammad, M. Azam and S.I. Al-Resayes, Pharmacophore Hybrid Approach of New Modulated Bis-diimine CuII/ZnII Complexes Based on 5-Chloro Isatin Schiff Base Derivatives: Synthesis, Spectral Studies and Comparative Biological Assessment, J. Photochem. Photobiol. B, 157, 39 (2016); https://doi.org/10.1016/j.jphotobiol.2016.01.019
  57. P.A. Kulkarni, S.I. Habib, M.M. Deshpande and D.V. Saraf, Spectral and Biological Study of Some Schiff Bases and their Lanthanide Complexes, J. Basic Appl. Chem., 2, 12 (2012).
  58. S. Zehra and M.S. Khan, I. Ahmad and F. Arjmand, New Tailored Substituted Benzothiazole Schiff Base Cu(II)/Zn(II) Antitumor Drug Entities: Effect of Substituents on DNA Binding Profile, Antimicrobial and Cytotoxic Activity, J. Biomol. Struct. Dyn., 37, 1863 (2018); https://doi.org/10.1080/07391102.2018.1467794
  59. S.S. Jawoor, S.A. Patil and S.S. Toragalmath, Synthesis and Characterization of Heteroleptic Schiff Base Transition Metal Complexes: A Study of Anticancer, Antimicrobial, DNA Cleavage and Anti-TB Activity, J. Coord. Chem., 71, 271 (2018); https://doi.org/10.1080/00958972.2017.1421951
  60. M. Chaurasia, D. Tomar and S. Chandra, Synthesis, Spectroscopic Charac-terization and DNA Binding Studies of Cu(II) Complex of Schiff Base Containing Benzothiazole Moiety, J. Taibah Univ. Sci., 13, 1050 (2019); https://doi.org/10.1080/16583655.2019.1681724
  61. A. Rambabu, M.P. Kumar, S. Tejaswi, N. Vamsikrishna and Shivaraj, DNA Interaction, Antimicrobial Studies of Newly Synthesized Copper (II) Complexes with 2-Amino-6-(trifluoromethoxy)benzothiazole Schiff Base Ligands, J. Photochem. Photobiol. B, 165, 147 (2016); https://doi.org/10.1016/j.jphotobiol.2016.10.027
  62. R. Alizadeh, I. Yousuf, M. Afzal, S. Srivastav, S. Srikrishna and F. Arjmand, Enantiomeric Fluoro-substituted Benzothiazole Schiff Base-Valine Cu(II)/Zn(II) Complexes as Chemotherapeutic Agents: DNA Binding Profile, Cleavage Activity, MTT Assay and Cell Imaging Studies, J. Photochem. Photobiol. B, 143, 61 (2015); https://doi.org/10.1016/j.jphotobiol.2014.12.027
  63. A.S. Thakar, K.S. Pandya, K.T. Joshi and A.M. Pancholi, Synthesis, Characterization and Antibacterial Activity of Novel Schiff Bases Derived from 4-Phenyl-2-aminothiazole and their Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) Metal complexes, E-J. Chem., 8, 1556 (2011); https://doi.org/10.1155/2011/875896
  64. Z.H. Chohan, A. Scozzafava and C.T. Supuran, Zinc Complexes of Benzothiazole Derived Schiff Bases with Antibacterial Activity, J. Enzyme Inhib. Med. Chem., 18, 259 (2003); https://doi.org/10.1080/1475636031000071817
  65. S.E. Etaiw, D.M. Abd El-Aziz, E.H. Abd El-Zaher and E.A. Ali, Synthesis, Spectral, Antimicrobial and Antitumor Assessment of Schiff Base Derived from 2-Aminobenzothiazole and its Transition Metal Complexes, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1331 (2011); https://doi.org/10.1016/j.saa.2011.04.064
  66. R. Alizadeh, M. Afzal and F. Arjmand, In vitro DNA Binding, pBR322 Plasmid Cleavage and Molecular Modeling Study of Chiral Benzothiazole Schiff-Base-Valine Cu(II) and Zn(II) Complexes to Evaluate their Enantiomeric Biological Disposition for Molecular Target DNA, Spectrochim. Acta A Mol. Biomol. Spectrosc., 131, 625 (2014); https://doi.org/10.1016/j.saa.2014.04.051
  67. J. Joseph and G.B. Janaki, Copper Complexes Bearing 2-Aminobenzo-thiazole Derivatives as Potential Antioxidant: Synthesis, Characterization, J. Photochem. Photobiol. B, 162, 86 (2016); https://doi.org/10.1016/j.jphotobiol.2016.06.030
  68. N. Vamsikrishna, M.P. Kumar, S. Tejaswi, A. Rambabu and Shivaraj, DNA Binding, Cleavage and Antibacterial Activity of Mononuclear Cu(II), Ni(II) and Co(II) Complexes Derived from Novel Benzothiazole Schiff Bases, J. Fluoresc., 26, 1317 (2016); https://doi.org/10.1007/s10895-016-1818-z
  69. S. Tejaswi, M.P. Kumar, A. Rambabu, N. Vamsikrishna and Shivaraj, Synthesis, Structural, DNA Binding and Cleavage Studies of Cu(II) Complexes Containing Benzothiazole Cored Schiff Bases, J. Fluoresc., 26, 2151 (2016); https://doi.org/10.1007/s10895-016-1911-3
  70. Z.H. Chohan and C.T. Supuran, Antibacterial Co(II) and Ni(II) Complexes of Benzothiazole-Derived Schiff Bases, Synth. React. Inorg. Met.-Org. Chem., 32, 1445 (2002); https://doi.org/10.1081/SIM-120014861
  71. J. Devi, S. Kumari and R. Malhotra, Synthesis, Spectroscopic Studies, and Biological Activity of Organosilicon(IV) Complexes of Ligands Derived from 2-Aminobenzothiazole Derivatives and 2-Hydroxy-3-Methoxy Benzaldehyde, Phosphorus Sulfur Silicon Rel. Elem., 187, 587 (2012); https://doi.org/10.1080/10426507.2011.634465
  72. N. Mishra, S.S. Gound, R. Mondal, R. Yadav and R. Pandey, Synthesis, Characterization and Antimicrobial Activities of Benzothiazole-imino-benzoic Acid Ligands and their Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes, Results Chem., 1, 100006 (2019); https://doi.org/10.1016/j.rechem.2019.100006
  73. N. Vamsikrishna, M.P. Kumar, G. Ramesh, N. Ganji, S. Daravath and Shivaraj, DNA Interactions and Biocidal Activity of Metal Complexes of Benzothiazole Schiff Bases: Synthesis, Characterization and Validation, J. Chem. Sci., 129, 609 (2017); https://doi.org/10.1007/s12039-017-1273-7
  74. S. Daravath, M.P. Kumar, A. Rambabu, N. Vamsikrishna, N. Ganji, Shivaraj, Spectroscopic, Quantum Chemical Calculations, Antioxidant, Anticancer, Antimicrobial, DNA Binding and Photo Physical Properties of Bioactive Cu(II) Complexes Obtained from Trifluoromethoxy Aniline Schiff Bases, J. Mol. Struct., 1249, 131601 (2017); https://doi.org/10.1016/j.molstruc.2021.131601
  75. J. Joseph and G.B. Janaki, Synthesis, Structural Characterization and Biological Studies of Copper Complexes with 2-Aminobenzothiazole Derivatives, J. Mater. Environ. Sci., 5, 693 (2014).
  76. S. Maikoo, L.M.K. Dingle, A. Chakraborty, B. Xulu, A.L. Edkins and I.N. Booysen, Synthetic, Characterization and Cytotoxic Studies of Ruthenium Complexes with Schiff Bases Encompassing Biologically Relevant Moieties, Polyhedron, 184, 114569 (2020); https://doi.org/10.1016/j.poly.2020.114569
  77. A.C. Ekennia, A.A. Osowole, L.O. Olasunkanmi, D.C. Onwudiwe and E.E. Ebenso, Coordination Behaviours of New (Bidentate N,O-Chelating) Schiff Bases towards Copper(II) and Nickel(II) Metal Ions: Synthesis, Characterization, Antimicrobial, Antioxidant and DFT Studies, Res. Chem. Intermed., 43, 3787 (2017); https://doi.org/10.1007/s11164-016-2841-z
  78. C. Vanucci-Bacque, C. Carayon, C. Bernis, C. Camare, A. Nègre-Salvayre, F. Bedos-Belval and M. Baltas, Synthesis, Antioxidant and Cytoprotective Evaluation of Potential Antiatherogenic Phenolic Hydrazones. A Structure–Activity Relationship Insight, Bioorg. Med. Chem., 22, 4269 (2014); https://doi.org/10.1016/j.bmc.2014.05.034
  79. P. Vicini, A. Geronikaki, M. Incerti, B. Busonera, G. Poni, C.A. Cabras and P. La Colla, Synthesis and Biological Evaluation of Benzo[d]isothiazole, Benzothiazole and Thiazole Schiff Bases, Bioorg. Med. Chem., 11, 4785 (2003); https://doi.org/10.1016/S0968-0896(03)00493-0
  80. E.M.H. Abbas, K.M. Amin, W.S. El-Hamouly, D.H. Dawood and M.M. Abdalla, Synthesis, Anti-Inflammatory and Antinociceptive Activity of Some Novel Benzothiazole Derivatives, Res. Chem. Intermed., 41, 2537 (2015); https://doi.org/10.1007/s11164-013-1367-x
  81. A. Geronikaki, D. Hadjipavlou-Litina and M. Amourgianou, Novel Thiazolyl, Thiazolinyl and Benzothiazolyl Schiff Bases as Possible Lipoxygenase’s Inhibitors and Anti-inflammatory Agents, Il Farmaco, 58, 489 (2003); https://doi.org/10.1016/S0014-827X(03)00065-X
  82. S. Ke, Y. Wei, Z. Yang, K. Wang, Y. Liang and L. Shi, Novel Cycloalkylthiophene–Imine Derivatives Bearing Benzothiazole Scaffold: Synthesis, Characterization and Antiviral Activity Evaluation, Bioorg. Med. Chem. Lett., 23, 5131 (2013); https://doi.org/10.1016/j.bmcl.2013.07.023
  83. C.T. Muttu, M.D. Bhanushali, S.M. Hipparagi, V.P. Tikare and K. Asif, Microwave Assisted Synthesis and Evaluation of Some Fluoro, Chloro 2N-(Substituted Schiff’s Bases)amino benzothiazoles Derivatives for their Antiinflammatory Activity, Int. J. Res. Ayurveda Pharm., 1, 522 (2010).
  84. A. Geronikaki, P. Vicini, M. Incerti and D. Hadjipavlou-Litina, Thiazolyl and Isothiazolyl Azomethine Derivatives with Anti-Inflammatory and Antioxidant Activities, Arzneim.-Forsch./Drug Res., 54, 530 (2004); https://doi.org/10.1055/s-0031-1297008
  85. V.R. Mishra, C.W. Ghanavatkar, S.N. Mali, H.K. Chaudhari and N. Sekar, Schiff Base Clubbed Benzothiazole: Synthesis, Potent Antimicrobial and MCF-7 Anticancer Activity, DNA Cleavage and Computational Study, J. Biomol. Struct. Dyn., 38, 1772 (2020); https://doi.org/10.1080/07391102.2019.1621213
  86. A.A.E.S. Abd Elaziz, A.M. Farag, I.I.A. Alagib, E.M. Abdallah and N.E.A. Mohammed, Evaluation of Some New Synthesis Benzothiazole and Benzimidazole Derivatives as Potential Antimicrobial and Anticancer Agents, Int. J. Adv. Appl. Sci., 7, 69 (2020); https://doi.org/10.21833/ijaas.2020.02.010
  87. A.S. Tapkir, S.S. Chitlange and R.P. Bhole, Dataset of 2-(2-(4-Aryloxybenzylidene)hydrazinyl)benzothiazole Derivatives for GQSAR of Antitubercular Agents, Data Brief, 14, 469 (2017); https://doi.org/10.1016/j.dib.2017.08.006
  88. V.N. Telvekar, V.K. Bairwa, K. Satardekar and A. Bellubi, Novel 2-(2-(4-Aryloxybenzylidene)hydrazinyl)benzothiazole Derivatives as Anti-tubercular Agents, Bioorg. Med. Chem. Lett., 22, 649 (2012). https://doi.org/10.1016/j.bmcl.2011.10.064
  89. S. Aggarwal, D. Paliwal, D. Kaushik, G.K. Gupta and A. Kumar, Pyrazole Schiff Base Hybrids as Anti-Malarial Agents: Synthesis, In Vitro Screening and Computational Study, Comb. Chem. High Throughput Screen., 21, 194 (2018); https://doi.org/10.2174/1386207321666180213092911
  90. D.R.S. Reddy and K.H. Kumar, N-Substituted Fluoro Benzothiazolo Schiff’s Bases: Synthesis and Characterisation of New Novel Anthelmintic Agents, Int. J. Pharm. Clin. Res., 6, 71 (2014).
  91. L. Katz, Antituberculous Compounds. III. Benzothiazole and Benzoxazole Derivatives, J. Am. Chem. Soc., 75, 712 (1953); https://doi.org/10.1021/ja01099a059
  92. M. Bhat and S.L. Belagali, Guanidinyl Benzothiazole Derivatives: Synthesis and Structure Activity Relationship Studies of a Novel Series of Potential Antimicrobial And Antioxidants, Res. Chem. Intermed., 42, 6195 (2016); https://doi.org/10.1007/s11164-016-2454-6
  93. G.M. Sreenivasa, E. Jyachandran, B. Shivakumar, K.K. Jayaraj and V. Kumar, Synthesis of Bioactive Molecule Fluoro Benzothiazole Comprising Potent Heterocyclic Moieties for Anthelmintic Activity, Arch. Pharm. Sci. Res., 1, 150 (2009).
  94. Chandramouli, M.R. Shivanand, T.B. Nayanbhai, Bheemachari and R.H. Udupi, Synthesis and Biological Screening of Certain New Triazole Schiff Bases and their Derivatives Bearing Substituted Benzothiazole Moiety, J. Chem. Pharm. Res., 4, 1151 (2012).
  95. J.K. Suyambulingam, R. Karvembu, N.S.P. Bhuvanesh, I.V.M.V. Enoch, P.M. Selvakumar, D. Premnath, C. Subramanian, P. Mayakrishnan, S.-H. Kim and I.-M. Chung, Synthesis, Structure, Biological/Chemosensor Evaluation and Molecular Docking Studies of Aminobenzothiazole Schiff Bases, J. Adhes. Sci. Technol., 34, 2590 (2020); https://doi.org/10.1080/01694243.2020.1775032
  96. H.K. Barot, G. Mallika, B.B. Sutariya, J. Shukla and L.V.G. Nargund, Synthesis of Nitrogen Mustards of Fluoro-benzothiazoles of Pharmaco-logical Interest, Res. J. Pharm. Biol. Chem. Sci., 1, 124 (2010).
  97. J. Waluvanaruk, W. Aeungmaitrepirom, T. Tuntulani and P. Ngamukot, Preconcentration and Determination of Trace Silver Ion using Benzothiazole Calix[4]arene Modified Silica by Flow Injection Flame Atomic Absorption Spectrometry, Anal. Sci., 30, 389 (2014); https://doi.org/10.2116/analsci.30.389
  98. M. Jadhao, R. Joshi, K. Ganorkar and S.K. Ghosh, Biomimetic Systems Trigger a Benzothiazole Based Molecular Switch to ‘Turn On’ Fluore-scence, Spectrochim. Acta A Mol. Biomol. Spectrosc., 217, 197 (2019); https://doi.org/10.1016/j.saa.2019.03.089
  99. M.A. Satam, R.D. Telore and N. Sekar, Photophysical Properties of Schiff’s Bases from 3-(1,3-Benzothiazol-2-yl)-2-hydroxy naphthalene-1-carbaldehyde, Spectrochim. Acta A Mol. Biomol. Spectrosc., 132, 678 (2014); https://doi.org/10.1016/j.saa.2014.05.029
  100. T. Tao, F. Xu, X.-C. Chen, Q.-Q. Liu, W. Huang and X.-Z. You, Comparisons between Azo Dyes and Schiff Bases having the Same Benzothiazole/Phenol Skeleton: Syntheses, Crystal Structures and Spectroscopic Properties, Dyes Pigments, 92, 916 (2012); https://doi.org/10.1016/j.dyepig.2011.09.008
  101. Y.-G. Wang, Y.-H. Wang, T. Tao, H.-F. Qian and W. Huang, Structural and Spectral Comparisons Between Isomeric Benzisothiazole and Benzothiazole Based Aromatic Heterocyclic Dyes, J. Mol. Struct., 1095, 42 (2015); https://doi.org/10.1016/j.molstruc.2015.04.017
  102. N.S.F. Dzulkharnien, N.M. Salleh, R. Yahya and M.R. Karim, Synthesis of Imine-Ester Linked Benzothiazole Mesogen Containing Liquid Crystalline Monomers with Different Terminal Substituents, Soft Mater., 15, 292 (2017); https://doi.org/10.1080/1539445X.2017.1355816
  103. S. Tiong Ha, T. Ming Koh, G.Y. Yeap, H.C. Lin, J.K. Beh, Y.F. Win and P.L. Boey, New Mesogenic Schiff Base Esters Comprising Benzothiazole Moiety: Synthesis and Mesomorphic Properties, Chin. Chem. Lett., 20, 1081 (2009); https://doi.org/10.1016/j.cclet.2009.03.048
  104. R.A. Sheakh Mohamad, W.M. Hamad, H.J. Aziz and N. Dege, Crystal Structure and Hirshfeld Surface Analysis of (E)-N-(4-propyl­oxybenzyl ­idene)benzo[d]thiazol-2-amine, Acta Crystallogr. E Crystallogr. Commun., 76, 1591 (2020); https://doi.org/10.1107/S2056989020012128
  105. T.K. Venkatachalam, G.K. Pierens and D.C. Reutens, Synthesis and Characterization of Benzothiazolyl-Substituted Anils, Magn. Reson. Chem., 48, 210 (2010); https://doi.org/10.1002/mrc.2568
  106. Y. Jiao, L. Zhou, H. He, J. Yin and C. Duan, A New Fluorescent Chemo-sensor for Recognition of Hg2+ Ions based on a Coumarin Derivative, Talanta, 162, 403 (2017); https://doi.org/10.1016/j.talanta.2016.10.004
  107. H.W. Zheng, Y. Kang, M. Wu, Q.F. Liang, J.Q. Zheng, X.J. Zheng and L.P. Jin, ESIPT-AIE Active Schiff Base based On 2-(2¢-Hydroxy-phenyl)benzothiazole Applied as Multi-Functional Fluorescent Chemosensors, Dalton Trans., 50, 3916 (2021); https://doi.org/10.1039/D1DT00241D
  108. S. Shimizu, T. Iino, A. Saeki, S. Seki and N. Kobayashi, Rational Molecular Design towards Vis/NIR Absorption and Fluorescence by using Pyrrolopyrrole aza-BODIPY and its Highly Conjugated Structures for Organic Photovoltaics, Chem. Eur. J., 21, 2893 (2015); https://doi.org/10.1002/chem.201405761
  109. S. Erdemir and O. Kocyigit, Reversible “OFF–ON” Fluorescent and Colorimetric Sensor based Benzothiazole-Bisphenol A for Fluoride in MeCN, Sens. Actuators B Chem., 221, 900 (2015); https://doi.org/10.1016/j.snb.2015.07.028