Main Article Content

Abstract

4-Formyl pyrazole is nitrogen containing heterocyclic aromatic molecule containing isoniazid moiety. The molecule is formed by fusion of two heterocyclic ring i.e. pyrazole and isoniazid. The current paper covers a vast range of methods for synthesis of 4-formyl pyrazole containing isoniazid moiety and its derivatives using variety of catalyst, solvent medium and microwave irridation with a goal of achieving a high yield and rapid separation of products. This work describes 4-formyl pyrazole and isoniazid antimicrobial activity as well as their structural-activity relationship. It also includes the mechanism of action of pyrazole and isoniazid and includes the list of current patents linked to various pharmacological activities in previous past years.

Keywords

4-Formyl pyrazole Isoniazid Pharmacological activity Heterocyclic Mechanism of action Pyrazole.n

Article Details

How to Cite
Chauhan, A., Kumar, A., & Goel, A. (2022). A Retrospective Study of Synthesis, Structure-Activity Relationship and Antimicrobial Activity of 4-Formyl Pyrazole Containing Isoniazid Moiety: A Review. Asian Journal of Organic & Medicinal Chemistry, 7(1), 11–22. https://doi.org/10.14233/ajomc.2022.AJOMC-P374

References

  1. P. Aragade, M. Palkar, P. Ronad and D. Satyanarayana, Coumarinyl Pyrazole Derivatives of INH: Promising Antimycobacterial Agents, Med. Chem. Res., 22, 2279 (2013); https://doi.org/10.1007/s00044-012-0222-8
  2. A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, Review: Biologically Active Pyrazole Derivatives, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A
  3. S.G. Küçükgüzel, S. Rollas, H. Erdeniz, M. Kiraz, A.C. Ekinci and A. Vidin, Synthesis, Characterization and Pharmacological Properties of Some 4-arylhydrazono-2-pyrazoline-5-one Derivatives Obtained from Heterocyclic Amines, Eur. J. Med. Chem., 35, 761 (2000); https://doi.org/10.1016/S0223-5234(00)90179-X
  4. R.F. Costa, L.C. Turones, K.V.N. Cavalcante, I.A. Rosa Jr., C.H. Xavier, L.P. Rosseto, H.B. Napolitano, P.F. da Silva Castro, M.L.F. Neto, G.M. Galvão, R. Menegatti, G.R. Pedrino, E.A. Costa, J.L.R Martins and J.O. Fajemiroye, Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations, Front. Pharmacol., 12, 666725 (2021); https://doi.org/10.3389/fphar.2021.666725
  5. L. Knorr, Action of Ethyl Acetoacetate on Phenylhydrazine. I, Chem. Ber., 16, 2597 (1883); https://doi.org/10.1002/cber.188301602194
  6. M.J. Naim, O. Alam, F. Nawaz, M.J. Alam and P. Alam, J. Pharm. Bioallied Sci., 8, 2 (2016); https://doi.org/10.4103/0975-7406.171694
  7. K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, F. Al-aizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
  8. S.S. Khan and A. Hasan, Synthesis of Some New Bioactive 1-N-Acid Hydrazide Substituted Pyrazolines, Heterocycl. Commun., 12, 377 (2006); https://doi.org/10.1515/HC.2006.12.5.377
  9. P.A. Channar, S. Afzal, S.A. Ejaz, A. Saeed, F.A. Larik, P.A. Mahesar, J. Lecka, J. Sévigny, M.F. Erben and J. Iqbal, Exploration of Carboxy Pyrazole Derivatives: Synthesis, Alkaline Phosphatase, Nucleotide Pyrophosphatase/Phosphodiesterase and Nucleoside Triphosphate Diphosphohydrolase Inhibition Studies with Potential Anticancer Profile, Eur. J. Med. Chem., 156, 461 (2018); https://doi.org/10.1016/j.ejmech.2018.07.002
  10. C.-Y. Zhang, X.-H. Liu, B.-L. Wang, S.-H. Wang and Z.-M. Li, Synthesis and Antifungal Activities of New Pyrazole Derivatives via 1,3-Dipolar Cycloaddition Reaction, Chem. Biol. Drug Des., 75, 489 (2010); https://doi.org/10.1111/j.1747-0285.2010.00948.x
  11. M. Abdel-Aziz, G.E.D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
  12. S. Bansal, M. Bala, S.K. Suthar, S. Choudhary, S. Bhattacharya, V. Bhardwaj, S. Singla and A. Joseph, Design and Synthesis of Novel 2-Phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as Selective COX-2 Inhibitors with Potent Anti-Inflammatory Activity, Eur. J. Med. Chem., 80, 167 (2014); https://doi.org/10.1016/j.ejmech.2014.04.045
  13. P.F.M. Oliveira, B. Guidetti, A. Chamayou, C. André-Barrès, J. Madacki, J. Korduláková, G. Mori, B. Orena, L. Chiarelli, M. Pasca, C. Lherbet, C. Carayon, S. Massou, M. Baron and M. Baltas, Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity, Molecules, 22, 1457 (2017); https://doi.org/10.3390/molecules22091457
  14. S. Fustero, M. Sánchez-Roselló, P. Barrio and A. Simón-Fuentes, From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles, Chem. Rev., 111, 6984 (2011); https://doi.org/10.1021/cr2000459
  15. O.O. Komolafe, Antibiotic Resistance in Bacteria - An Emerging Public Health Problem, Malawi Med. J., 15, 63 (2003).
  16. R.A. Devasia, T.F. Jones, J. Ward, L. Stafford, H. Hardin, C. Bopp, M. Beatty, E. Mintz and W. Schaffner, Endemically Acquired Foodborne Outbreak of Enterotoxin-Producing Escherichia coli Serotype O169: H41, Am. J. Med., 119, 168.e7 (2006); https://doi.org/10.1016/j.amjmed.2005.07.063
  17. F.S. Al-Khattaf, A. Mani, A. Atef Hatamleh and I. Akbar, Antimicrobial and Cytotoxic Activities of Isoniazid Connected Menthone Derivatives and their Investigation of Clinical Pathogens Causing Infectious Disease, J. Infect. Public Health, 14, 533 (2021); https://doi.org/10.1016/j.jiph.2020.12.033
  18. S.T. Murphy, H.L. Case, E. Ellsworth, S. Hagen, M. Huband, T. Joannides, C. Limberakis, K.R. Marotti, A.M. Ottolini, M. Rauckhorst, J. Starr, M. Stier, C. Taylor, T. Zhu, A. Blaser, W.A. Denny, G.-L. Lu, J.B. Smaill and F. Rivault, The Synthesis and Biological Evaluation of Novel Series of Nitrile-Containing Fluoroquinolones as Antibacterial Agents, Bioorg. Med. Chem. Lett., 17, 2150 (2007); https://doi.org/10.1016/j.bmcl.2007.01.090
  19. S. Manfredini, R. Bazzanini, P.G. Baraldi, M. Guarneri, D. Simoni, M.E. Marongiu, A. Pani, E. Tramontano and P. La Colla, Pyrazole-Related Nucleosides. Synthesis and Antiviral/Antitumor Activity of Some Substituted Pyrazole and Pyrazolo[4,3-d]-1,2,3-triazin-4-one Nucleosides, J. Med. Chem., 35, 917 (1992); https://doi.org/10.1021/jm00083a017
  20. R. Sridhar and P.T. Perumal, Synthesis of Novel 1H-Pyrazole-4-carboxylic Acid Esters by Conventional and Microwave Assisted Vilsmeier Cyclization of Hydrazones, Synth. Commun., 33, 1483 (2003); https://doi.org/10.1081/SCC-120018766
  21. G. Sivaprasad, R. Sridhar and P.T. Perumal, Selective Synthesis of Some 4,5-Dihydro-2H-benzo[g]indazoles and 8,9-Dihydro-2H-benzo[e]-indazoles via the Vilsmeier-Haack Reaction under Thermal and Microwave Assisted Conditions, J. Heterocycl. Chem., 43, 389 (2006); https://doi.org/10.1002/jhet.5570430219
  22. S.P. Ivonin, B.B. Kurpil’, O.O. Grygorenko and D.M. Volochnyuk, Heterocycl. Commun., 20, 351 (2014); https://doi.org/10.1515/hc-2014-0176
  23. M. Ramadan, A.A. Aly, L.E.A. El-Haleem, M.B. Alshammari and S. Bräse, Molecules, 26, 4995 (2021); https://doi.org/10.3390/molecules26164995
  24. K. Elumalai, M.A. Ali, M. Elumalai, K. Eluri and S. Srinivasan, Novel Isoniazid Cyclocondensed 1,2,3,4-Tetrahydropyrimidine Derivatives for Treating Infectious Disease: A Synthesis and in vitro Biological Evaluation, J. Acute Dis., 2, 316 (2013); https://doi.org/10.1016/S2221-6189(13)60151-1
  25. M. Asif, A Review on Effect of Antitubercular Activity on Structural Modification of Isoniazide, J. Pharm. Appl. Chem., 3, 1 (2017); https://doi.org/10.18576/jpac/030101
  26. C. Vilchèze and W.R. Jacobs Jr., The Mechanism of Isoniazid Killing: Clarity Through the Scope of Genetics, Annu. Rev. Microbiol., 61, 35 (2007); https://doi.org/10.1146/annurev.micro.61.111606.122346
  27. D. Sriram, P. Yogeeswari and K. Madhu, Synthesis and in vitro and in vivo Antimycobacterial Activity of Isonicotinoyl Hydrazones, Bioorg. Med. Chem. Lett., 15, 4502 (2005); https://doi.org/10.1016/j.bmcl.2005.07.011
  28. G. Ugurlu, Molecular Structures and Electronic Properties of Isonicotinic Acid (3-Methoxy-4-hydroxy-benzylidene)hydrazide: Ab initio and DFT Calculation, AIP Conf. Proc., 1815, 030017 (2017); https://doi.org/10.1063/1.4976365
  29. D.G. Ghiano, A. Recio-Balsells, A. Bortolotti, L.A. Defelipe, A. Turjanski, H.R. Morbidoni and G.R. Labadie, New One-pot Synthesis of Anti-tuberculosis Compounds Inspired on Isoniazid, Eur. J. Med. Chem., 208, 112699 (2020); https://doi.org/10.1016/j.ejmech.2020.112699
  30. A. Banerjee, E. Dubnau, A. Quemard, V. Balasubramanian, K.S. Um, T. Wilson, D. Collins, G. de Lisle and W.R. Jacobs Jr., inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis, Science, 263, 227 (1994); https://doi.org/10.1126/science.8284673
  31. V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Isonicotinic Acid Hydrazide Derivatives: Synthesis, Antimicrobial Activity and QSAR Studies, Med. Chem. Res., 21, 1451 (2012); https://doi.org/10.1007/s00044-011-9662-9
  32. K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 5, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
  33. A. Kumar, P. Sharma, V.K. Gurram and N. Rane, Studies on Synthesis and Evaluation of Quantitative Structure–Activity Relationship of 10-Methyl-6-oxo-5-arylazo-6,7-dihydro-5H-[1,3]azaphospholo[1,5-d]-[1,4]benzodiazepin-2-phospha-3-ethoxycarbonyl-1-phosphorus Dichlorides, Bioorg. Med. Chem. Lett., 16, 2484 (2006); https://doi.org/10.1016/j.bmcl.2006.01.080
  34. B. Desai, D. Sureja, Y. Naliapara, A. Shah and A.K. Saxena, Synthesis and QSAR Studies of 4-Substituted phenyl-2,6-dimethyl-3, 5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as Potential Antitubercular Agents, Bioorg. Med. Chem., 9, 1993 (2001); https://doi.org/10.1016/S0968-0896(01)00141-9
  35. A. Imramovský, S. Polanc, J. Vinšová, M. Koèevar, J. Jampílek, Z. Reèková and J. Kaustová, A New Modification of Anti-tubercular Active Molecules, Bioorg. Med. Chem., 15, 2551 (2007); https://doi.org/10.1016/j.bmc.2007.01.051
  36. G. Sbardella, A. Mai, M. Artico, M.G. Setzu, G. Poni and P. La Colla, New 6-Nitroquinolones: Synthesis and Antimicrobial Activities, Farmaco, 59, 463 (2004); https://doi.org/10.1016/j.farmac.2004.01.014
  37. Ö.Ö. Güven, T. Erdogan, H. Göker and S. Yildiz, Synthesis and Antimicrobial Activity of Some Novel Phenyl and Benzimidazole Substituted Benzyl Ethers, Bioorg. Med. Chem. Lett., 17, 2233 (2007); https://doi.org/10.1016/j.bmcl.2007.01.061
  38. R. Lan, Q. Liu, P. Fan, S. Lin, S.R. Fernando, D. McCallion, R. Pertwee and A. Makriyannis, Structure-Activity Relationships of Pyrazole Derivatives as Cannabinoid Receptor Antagonists, J. Med. Chem., 42, 769 (1999); https://doi.org/10.1021/jm980363y
  39. Kumar KA, Govindappa VK, Nagamallu R, Nayaka MAH. Evaluation Of New Pyrazole Derivatives For Their Biological Activity/: Structure-Activity Relationship. 2013;(September 2015).
  40. Power R. Kumar et al. 3, 4801 (2012).
  41. G.M. Reddy, J.R. Garcia, G. Yuvaraja, M. Venkata Subbaiah and J.-C. Wen, Design, Synthesis of Tri-Substituted Pyrazole Derivatives as Promising Antimicrobial Agents and Investigation of Structure Activity Relationships, J. Heterocycl. Chem., 57, 2288 (2020); https://doi.org/10.1002/jhet.3952
  42. D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De Logu, R. Meleddu, M. Saddi and M. Botta, Synthesis, Biological Evaluation, and SAR Study of Novel Pyrazole Analogues as Inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of Rigid Pyrazolones, Bioorg. Med. Chem., 17, 5716 (2009); https://doi.org/10.1016/j.bmc.2009.05.058
  43. Y. Ling, Z.Y. Hao, D. Liang, C.L. Zhang, Y.F. Liu and Y. Wang, The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design, Drug Design Dev. Ther., 15, 4289 (2021); https://doi.org/10.2147/DDDT.S329547
  44. M.K. Vekariya, R.H. Vekariya, K.D. Patel, N.P. Raval, P.U. Shah, D.P. Rajani and N.K. Shah, Pyrimidine-Pyrazole Hybrids as Morpholino-pyrimidine-Based Pyrazole Carboxamides: Synthesis, Characterisation, Docking, ADMET Study and Biological Evaluation, ChemistrySelect, 3, 6998 (2018); https://doi.org/10.1002/slct.201801011
  45. N. Devi, R. Shankar and V. Singh, 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-Fused/Substituted Frameworks, J. Heterocycl. Chem., 55, 373 (2018); https://doi.org/10.1002/jhet.3045
  46. R. Surendra Kumar, I.A. Arif, A. Ahamed and A. Idhayadhulla, Anti-Inflammatory and Antimicrobial Activities of Novel Pyrazole Analogues, Saudi J. Biol. Sci., 23, 614 (2016); https://doi.org/10.1016/j.sjbs.2015.07.005
  47. B. Parashar, S. Bharadwaj, A. Sahu, V.K. Sharma and P.B. Punjabi, Microwave Assisted Synthesis and Antimicrobial Activity of Some Novel Isonicotinoyl-Pyrazol Derivatives, Int. J. ChemTech Res., 2, 1454 (2010).
  48. D. Visagaperumal, R.J. Kumar, R. Vijayaraj and N. Anbalagan, Microwave Induced Synthesis of Some New 3-Substituted-1,3-thiazolidin-4-ones for their Potent Antimicrobial and Antitubercular Activities, Int. J. ChemTech. Res., 1, 1048 (2009).
  49. P. Kumari, S. Sood, A.Kumar and K. Singh, Microwave-Assisted Vilsmeier-Haack synthesis of Pyrazole-4-carbaldehydes, J. Heterocycl. Chem., 57, 796 (2000); https://doi.org/10.1002/jhet.3824
  50. U. Sahoo, B. Dhanya, A.K.Seth, A.K. Sen, S. Kumar, Y.C. Yadav, T.K. Ghelani and R. Chawla, Microwave Assisted Synthesis and Charact-erization of Certain Novel Bipyrazole Derivatives and their Antimicrobial Activities. Int. J. Pharm. Res., 2, 82 (2010).
  51. E. Szymanska and K. Kiec-Kononowicz, Antimycobacterial Activity of 5-Arylidene Aromatic Derivatives of Hydantoin, Farmaco, 57, 355 (2002); https://doi.org/10.1016/s0014-827x(01)01194-6
  52. N. Nayak, J. Ramprasad and U. Dalimba, New INH–Pyrazole Analogs: Design, Synthesis and Evaluation of Antitubercular and Antibacterial Activity, Bioorg. Med. Chem. Lett., 25, 5540 (2015); https://doi.org/10.1016/j.bmcl.2015.10.057
  53. P.K. Sahu, P.K. Sahu, S.K. Gupta, D. Thavaselvam and D.D. Agarwal, Synthesis and Evaluation of Antimicrobial Activity of 4H-Pyrimido-[2,1-b]benzothiazole, Pyrazole and Benzylidene Derivatives of Curcumin, Eur. J. Med. Chem., 54, 366 (2012); https://doi.org/10.1016/j.ejmech.2012.05.020
  54. K.V. Chikkula and R. Sundararajan, Analgesic, Anti-Inflammatory, and Antimicrobial Activities of Novel Isoxazole/Pyrimidine/Pyrazole Substituted Benzimidazole Analogs, Med. Chem. Res., 26, 3026 (2017); https://doi.org/10.1007/s00044-017-2000-0
  55. S.Y. Hassan, Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives, Molecules, 18, 2683 (2013); https://doi.org/10.3390/molecules18032683
  56. A.A. Napoleon, F.N. Khan, E.D. Jeong and E.H. Chung, Potential Anti-Tubercular Agents: Hexahydro-3-phenyl indazol-2-yl(pyridin-4-yl)-methanones from Anti-Tubercular Drug Isoniazid and bis(Substituted-benzylidene)cycloalkanones, Chin. Chem. Lett., 26, 567 (2015); https://doi.org/10.1016/j.cclet.2015.01.008
  57. S.I. Shaikh, Z. Zaheer, S.N. Mokale and D.K. Lokwani, Development of New Pyrazole Hybrids as Antitubercular Agents: Synthesis, Biological Evaluation and Molecular Docking Study, Int. J. Pharm. Pharm. Sci., 9, 11 (2017).
  58. M.N. Kumbar, R.R. Kamble, J.P. Dasappa, P.K. Bayannavar, H.A. Khamees, M. Mahendra, S.D. Joshi, S. Dodamani, V.P. Rasal and S. Jalalpure, 5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, Structural Characterization, Hirshfeld Analysis, Anti-Inflammatory and Antibacterial Studies, J. Mol. Struct., 1160, 63 (2018); https://doi.org/10.1016/j.molstruc.2018.01.047
  59. P. Aragade, S. Kolhe, H. Kamble, D. Baheti and V. Maddi, Synthesis and Preliminary Evaluation of Some Substituted Pyrazoles as Anticonvulsant Agents, Int. J. Drug Design Discov., 3, 688 (2012).
  60. V. Kumar, M. Kumar, V. Beniwal, G.K. Gupta, S. Kumar and R. Kataria, Synthesis of Some Aroylhydrazones and 2,5-Disubstituted-1,3,4-Oxadiazoles as DNA Photocleaving Agents, Med. Chem., 6, 474 (2016); https://doi.org/10.4172/2161-0444.1000386
  61. M.A. Ali, M. Shaharyar and E.D.E. Clercq, Synthesis of 5-(4-Hydroxy-3-methylphenyl)-5-(substituted phenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone Derivatives with Anti-Viral Activity, J. Enzyme Inhib. Med. Chem., 22, 702 (2007); https://doi.org/10.1080/14756360701265832
  62. R. Soliman and S.A. Darwish Antidiabetic Activity of Some 1-Substituted 3,5-Dimethylpyrazoles, J. Med. Chem., 531, 1659 (1983); https://doi.org/10.1021/jm00365a023
  63. W.S. Hamama, H.G. El-Gohary, M. Soliman and H.H. Zoorob, A Versatile Synthesis, PM3-Semiempirical, Antibacterial and Antitumor Evaluation of Some Bioactive Pyrazoles, J. Heterocycl. Chem., 49, 543 (2012); https://doi.org/10.1002/jhet.806
  64. A.K. Gadad, C.S. Mahajanshetti, S. Nimbalkar and A. Raichurkar, Preliminary Communication Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3,4-thiadiazole-2-Sulfonamide Derivatives, Eur. J. Med. Chem., 35, 853 (2000); https://doi.org/10.1016/s0223-5234(00)00166-5
  65. A.M. Katz, C.M. Pearson and J.M. Kennedy, A Clinical Trial of Indomethacin in Rheumatoid Arthritis, Clin. Pharmacol. Ther., 6, 25 (1964); https://doi.org/10.1002/cpt19656125
  66. S. Zargarnezhad, A. Gholami, M. Khoshneviszadeh, S.N. Abootalebi and Y. Ghasemi, Antimicrobial Activity of Isoniazid in Conjugation with Surface-Modified Magnetic Nanoparticles against Mycobacterium tuberculosis and Nonmycobacterial Microorganisms, J. Nanomater., 2020, 7372531 (2020); https://doi.org/10.1155/2020/7372531
  67. P.E. Almeida da Silva, D.F. Ramos, H.G. Bonacorso, A.I. de la Iglesia, M.R. Oliveira, T. Coelho, J. Navarini, H.R. Morbidoni, N. Zanatta and M.A.P. Martins, Synthesis and in vitro Antimycobacterial Activity of 3-Substituted 5-Hydroxy-5-Trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl)pyrazoles, Int. J. Antimicrob. Agents, 32, 139 (2008); https://doi.org/10.1016/j.ijantimicag.2008.03.019
  68. E. Akbas, I. Berber, A. Sener and B. Hasanov, Synthesis and Antibacterial Activity of 4-Benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic Acid and Derivatives, Farmaco, 60, 23 (2005); https://doi.org/10.1016/j.farmac.2004.09.003
  69. S.A. Malladi, A.M. Isloor, S.K. Peethambar and B.M. Ganesh, Synthesis and Antimicrobial Activity of Some New Pyrazole Containing Cyanopyridone Derivatives, Der Pharm. Chem., 4, 43 (2012).
  70. R. Sridhar, P.T. Perumal, S. Etti, G. Shanmugam, M.N. Ponnuswamy, V.R. Prabavathy and N. Mathivanan, Synthesis, Characterization and Antimicrobial Activity of Novel Ethyl 1-(N-substituted)-5-phenyl-1H-pyrazole-4-carboxylate Derivatives, Bioorg. Med. Chem. Lett., 14, 6035 (2004); https://doi.org/10.1016/j.bmcl.2004.09.066
  71. B. Chandrakantha, A.M. Isloor, P. Shetty, S. Isloor, S. Malladi and H.K. Fun, Synthesis, Characterization and Antimicrobial Activity of Novel Ethyl 1-(N-Substituted)-5-phenyl-1H-Pyrazole-4-carboxylate Derivatives, Med. Chem. Res., 21, 2702 (2012); https://doi.org/10.1007/s00044-011-9796-9
  72. S. Bondock, W. Fadaly and M.A. Metwally, Synthesis and Antimicrobial Activity of Some New Thiazole, Thiophene and Pyrazole Derivatives Containing Benzothiazole Moiety, Eur. J. Med. Chem., 45, 3692 (2010); https://doi.org/10.1016/j.ejmech.2010.05.018
  73. R. Nagamallu, B. Srinivasan, M.B. Ningappa and A.K. Kariyappa, Synthesis of Novel Coumarin Appended Bis(Formylpyrazole) Derivatives: Studies on Their Antimicrobial and Antioxidant Activities, Bioorg. Med. Chem. Lett., 26, 690 (2016); https://doi.org/10.1016/j.bmcl.2015.11.038
  74. J. Sun and Y. Zhou, Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyrazole Carboxylate, Molecules, 20, 4383 (2015); https://doi.org/10.3390/molecules20034383
  75. S. Du, Z. Tian, D. Yang, X. Li, H. Li, C. Jia, C. Che, M. Wang and Z. Qin, Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides, Molecules, 20, 8395 (2015); https://doi.org/10.3390/molecules20058395
  76. Z. Wu, D. Hu, J. Kuang, H. Cai, S. Wu and W. Xue, Synthesis and Antifungal Activity of N-(Substituted pyridinyl)-1-methyl(phenyl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide Derivatives, Molecules, 17, 14205 (2012); https://doi.org/10.3390/molecules171214205
  77. B.V. Kendre, M.G. Landge and S.R. Bhusare, Synthesis and Biological Evaluation of Some Novel Pyrazole, Isoxazole, Benzoxazepine, Benzothiazepine and Benzodiazepine Derivatives Bearing an Aryl Sulfonate Moiety as Antimicrobial and Anti-Inflammatory Agents, Arab. J. Chem., 12, 2091 (2019); https://doi.org/10.1016/j.arabjc.2015.01.007
  78. R. Nagamallu and K. Ajay Kumar, Synthesis and Biological Evaluation of Novel Formyl-Pyrazoles Bearing Coumarin Moiety as Potent Antimicrobial and Antioxidant Agents, Bioorg. Med. Chem. Lett., 23, 6406 (2013); https://doi.org/10.1016/j.bmcl.2013.09.053
  79. P.S. Patil, S.L. Kasare, N.B. Haval, V.M. Khedkar, P.P. Dixit, E.M. Rekha, D. Sriram and K.P. Haval, Novel isoniazid Embedded Triazole Derivatives: Synthesis, Antitubercular and Antimicrobial Activity Evaluation, Bioorg. Med. Chem. Lett., 30, 127434 (2020); https://doi.org/10.1016/j.bmcl.2020.127434
  80. V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Isonicotinic acid Hydrazide Derivatives: Synthesis, Antimicrobial Activity, and QSAR Studies, Med. Chem. Res., 21, 1451 (2012); https://doi.org/10.1007/s00044-011-9662-9
  81. E. Pahlavani, H. Kargar and N. Sepehri Rad, A Study on Antitubercular and Antimicrobial Activity of Isoniazid Derivative, Zahedan J. Res. Med. Sci., 17, 3 (2015); https://doi.org/10.17795/zjrms1010