Main Article Content
Abstract
4-Formyl pyrazole is nitrogen containing heterocyclic aromatic molecule containing isoniazid moiety. The molecule is formed by fusion of two heterocyclic ring i.e. pyrazole and isoniazid. The current paper covers a vast range of methods for synthesis of 4-formyl pyrazole containing isoniazid moiety and its derivatives using variety of catalyst, solvent medium and microwave irridation with a goal of achieving a high yield and rapid separation of products. This work describes 4-formyl pyrazole and isoniazid antimicrobial activity as well as their structural-activity relationship. It also includes the mechanism of action of pyrazole and isoniazid and includes the list of current patents linked to various pharmacological activities in previous past years.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- P. Aragade, M. Palkar, P. Ronad and D. Satyanarayana, Coumarinyl Pyrazole Derivatives of INH: Promising Antimycobacterial Agents, Med. Chem. Res., 22, 2279 (2013); https://doi.org/10.1007/s00044-012-0222-8
- A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, Review: Biologically Active Pyrazole Derivatives, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A
- S.G. Küçükgüzel, S. Rollas, H. Erdeniz, M. Kiraz, A.C. Ekinci and A. Vidin, Synthesis, Characterization and Pharmacological Properties of Some 4-arylhydrazono-2-pyrazoline-5-one Derivatives Obtained from Heterocyclic Amines, Eur. J. Med. Chem., 35, 761 (2000); https://doi.org/10.1016/S0223-5234(00)90179-X
- R.F. Costa, L.C. Turones, K.V.N. Cavalcante, I.A. Rosa Jr., C.H. Xavier, L.P. Rosseto, H.B. Napolitano, P.F. da Silva Castro, M.L.F. Neto, G.M. Galvão, R. Menegatti, G.R. Pedrino, E.A. Costa, J.L.R Martins and J.O. Fajemiroye, Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations, Front. Pharmacol., 12, 666725 (2021); https://doi.org/10.3389/fphar.2021.666725
- L. Knorr, Action of Ethyl Acetoacetate on Phenylhydrazine. I, Chem. Ber., 16, 2597 (1883); https://doi.org/10.1002/cber.188301602194
- M.J. Naim, O. Alam, F. Nawaz, M.J. Alam and P. Alam, J. Pharm. Bioallied Sci., 8, 2 (2016); https://doi.org/10.4103/0975-7406.171694
- K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, F. Al-aizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
- S.S. Khan and A. Hasan, Synthesis of Some New Bioactive 1-N-Acid Hydrazide Substituted Pyrazolines, Heterocycl. Commun., 12, 377 (2006); https://doi.org/10.1515/HC.2006.12.5.377
- P.A. Channar, S. Afzal, S.A. Ejaz, A. Saeed, F.A. Larik, P.A. Mahesar, J. Lecka, J. Sévigny, M.F. Erben and J. Iqbal, Exploration of Carboxy Pyrazole Derivatives: Synthesis, Alkaline Phosphatase, Nucleotide Pyrophosphatase/Phosphodiesterase and Nucleoside Triphosphate Diphosphohydrolase Inhibition Studies with Potential Anticancer Profile, Eur. J. Med. Chem., 156, 461 (2018); https://doi.org/10.1016/j.ejmech.2018.07.002
- C.-Y. Zhang, X.-H. Liu, B.-L. Wang, S.-H. Wang and Z.-M. Li, Synthesis and Antifungal Activities of New Pyrazole Derivatives via 1,3-Dipolar Cycloaddition Reaction, Chem. Biol. Drug Des., 75, 489 (2010); https://doi.org/10.1111/j.1747-0285.2010.00948.x
- M. Abdel-Aziz, G.E.D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
- S. Bansal, M. Bala, S.K. Suthar, S. Choudhary, S. Bhattacharya, V. Bhardwaj, S. Singla and A. Joseph, Design and Synthesis of Novel 2-Phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as Selective COX-2 Inhibitors with Potent Anti-Inflammatory Activity, Eur. J. Med. Chem., 80, 167 (2014); https://doi.org/10.1016/j.ejmech.2014.04.045
- P.F.M. Oliveira, B. Guidetti, A. Chamayou, C. André-Barrès, J. Madacki, J. Korduláková, G. Mori, B. Orena, L. Chiarelli, M. Pasca, C. Lherbet, C. Carayon, S. Massou, M. Baron and M. Baltas, Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity, Molecules, 22, 1457 (2017); https://doi.org/10.3390/molecules22091457
- S. Fustero, M. Sánchez-Roselló, P. Barrio and A. Simón-Fuentes, From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles, Chem. Rev., 111, 6984 (2011); https://doi.org/10.1021/cr2000459
- O.O. Komolafe, Antibiotic Resistance in Bacteria - An Emerging Public Health Problem, Malawi Med. J., 15, 63 (2003).
- R.A. Devasia, T.F. Jones, J. Ward, L. Stafford, H. Hardin, C. Bopp, M. Beatty, E. Mintz and W. Schaffner, Endemically Acquired Foodborne Outbreak of Enterotoxin-Producing Escherichia coli Serotype O169: H41, Am. J. Med., 119, 168.e7 (2006); https://doi.org/10.1016/j.amjmed.2005.07.063
- F.S. Al-Khattaf, A. Mani, A. Atef Hatamleh and I. Akbar, Antimicrobial and Cytotoxic Activities of Isoniazid Connected Menthone Derivatives and their Investigation of Clinical Pathogens Causing Infectious Disease, J. Infect. Public Health, 14, 533 (2021); https://doi.org/10.1016/j.jiph.2020.12.033
- S.T. Murphy, H.L. Case, E. Ellsworth, S. Hagen, M. Huband, T. Joannides, C. Limberakis, K.R. Marotti, A.M. Ottolini, M. Rauckhorst, J. Starr, M. Stier, C. Taylor, T. Zhu, A. Blaser, W.A. Denny, G.-L. Lu, J.B. Smaill and F. Rivault, The Synthesis and Biological Evaluation of Novel Series of Nitrile-Containing Fluoroquinolones as Antibacterial Agents, Bioorg. Med. Chem. Lett., 17, 2150 (2007); https://doi.org/10.1016/j.bmcl.2007.01.090
- S. Manfredini, R. Bazzanini, P.G. Baraldi, M. Guarneri, D. Simoni, M.E. Marongiu, A. Pani, E. Tramontano and P. La Colla, Pyrazole-Related Nucleosides. Synthesis and Antiviral/Antitumor Activity of Some Substituted Pyrazole and Pyrazolo[4,3-d]-1,2,3-triazin-4-one Nucleosides, J. Med. Chem., 35, 917 (1992); https://doi.org/10.1021/jm00083a017
- R. Sridhar and P.T. Perumal, Synthesis of Novel 1H-Pyrazole-4-carboxylic Acid Esters by Conventional and Microwave Assisted Vilsmeier Cyclization of Hydrazones, Synth. Commun., 33, 1483 (2003); https://doi.org/10.1081/SCC-120018766
- G. Sivaprasad, R. Sridhar and P.T. Perumal, Selective Synthesis of Some 4,5-Dihydro-2H-benzo[g]indazoles and 8,9-Dihydro-2H-benzo[e]-indazoles via the Vilsmeier-Haack Reaction under Thermal and Microwave Assisted Conditions, J. Heterocycl. Chem., 43, 389 (2006); https://doi.org/10.1002/jhet.5570430219
- S.P. Ivonin, B.B. Kurpil’, O.O. Grygorenko and D.M. Volochnyuk, Heterocycl. Commun., 20, 351 (2014); https://doi.org/10.1515/hc-2014-0176
- M. Ramadan, A.A. Aly, L.E.A. El-Haleem, M.B. Alshammari and S. Bräse, Molecules, 26, 4995 (2021); https://doi.org/10.3390/molecules26164995
- K. Elumalai, M.A. Ali, M. Elumalai, K. Eluri and S. Srinivasan, Novel Isoniazid Cyclocondensed 1,2,3,4-Tetrahydropyrimidine Derivatives for Treating Infectious Disease: A Synthesis and in vitro Biological Evaluation, J. Acute Dis., 2, 316 (2013); https://doi.org/10.1016/S2221-6189(13)60151-1
- M. Asif, A Review on Effect of Antitubercular Activity on Structural Modification of Isoniazide, J. Pharm. Appl. Chem., 3, 1 (2017); https://doi.org/10.18576/jpac/030101
- C. Vilchèze and W.R. Jacobs Jr., The Mechanism of Isoniazid Killing: Clarity Through the Scope of Genetics, Annu. Rev. Microbiol., 61, 35 (2007); https://doi.org/10.1146/annurev.micro.61.111606.122346
- D. Sriram, P. Yogeeswari and K. Madhu, Synthesis and in vitro and in vivo Antimycobacterial Activity of Isonicotinoyl Hydrazones, Bioorg. Med. Chem. Lett., 15, 4502 (2005); https://doi.org/10.1016/j.bmcl.2005.07.011
- G. Ugurlu, Molecular Structures and Electronic Properties of Isonicotinic Acid (3-Methoxy-4-hydroxy-benzylidene)hydrazide: Ab initio and DFT Calculation, AIP Conf. Proc., 1815, 030017 (2017); https://doi.org/10.1063/1.4976365
- D.G. Ghiano, A. Recio-Balsells, A. Bortolotti, L.A. Defelipe, A. Turjanski, H.R. Morbidoni and G.R. Labadie, New One-pot Synthesis of Anti-tuberculosis Compounds Inspired on Isoniazid, Eur. J. Med. Chem., 208, 112699 (2020); https://doi.org/10.1016/j.ejmech.2020.112699
- A. Banerjee, E. Dubnau, A. Quemard, V. Balasubramanian, K.S. Um, T. Wilson, D. Collins, G. de Lisle and W.R. Jacobs Jr., inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis, Science, 263, 227 (1994); https://doi.org/10.1126/science.8284673
- V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Isonicotinic Acid Hydrazide Derivatives: Synthesis, Antimicrobial Activity and QSAR Studies, Med. Chem. Res., 21, 1451 (2012); https://doi.org/10.1007/s00044-011-9662-9
- K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 5, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
- A. Kumar, P. Sharma, V.K. Gurram and N. Rane, Studies on Synthesis and Evaluation of Quantitative Structure–Activity Relationship of 10-Methyl-6-oxo-5-arylazo-6,7-dihydro-5H-[1,3]azaphospholo[1,5-d]-[1,4]benzodiazepin-2-phospha-3-ethoxycarbonyl-1-phosphorus Dichlorides, Bioorg. Med. Chem. Lett., 16, 2484 (2006); https://doi.org/10.1016/j.bmcl.2006.01.080
- B. Desai, D. Sureja, Y. Naliapara, A. Shah and A.K. Saxena, Synthesis and QSAR Studies of 4-Substituted phenyl-2,6-dimethyl-3, 5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as Potential Antitubercular Agents, Bioorg. Med. Chem., 9, 1993 (2001); https://doi.org/10.1016/S0968-0896(01)00141-9
- A. Imramovský, S. Polanc, J. Vinšová, M. Koèevar, J. Jampílek, Z. Reèková and J. Kaustová, A New Modification of Anti-tubercular Active Molecules, Bioorg. Med. Chem., 15, 2551 (2007); https://doi.org/10.1016/j.bmc.2007.01.051
- G. Sbardella, A. Mai, M. Artico, M.G. Setzu, G. Poni and P. La Colla, New 6-Nitroquinolones: Synthesis and Antimicrobial Activities, Farmaco, 59, 463 (2004); https://doi.org/10.1016/j.farmac.2004.01.014
- Ö.Ö. Güven, T. Erdogan, H. Göker and S. Yildiz, Synthesis and Antimicrobial Activity of Some Novel Phenyl and Benzimidazole Substituted Benzyl Ethers, Bioorg. Med. Chem. Lett., 17, 2233 (2007); https://doi.org/10.1016/j.bmcl.2007.01.061
- R. Lan, Q. Liu, P. Fan, S. Lin, S.R. Fernando, D. McCallion, R. Pertwee and A. Makriyannis, Structure-Activity Relationships of Pyrazole Derivatives as Cannabinoid Receptor Antagonists, J. Med. Chem., 42, 769 (1999); https://doi.org/10.1021/jm980363y
- Kumar KA, Govindappa VK, Nagamallu R, Nayaka MAH. Evaluation Of New Pyrazole Derivatives For Their Biological Activity/: Structure-Activity Relationship. 2013;(September 2015).
- Power R. Kumar et al. 3, 4801 (2012).
- G.M. Reddy, J.R. Garcia, G. Yuvaraja, M. Venkata Subbaiah and J.-C. Wen, Design, Synthesis of Tri-Substituted Pyrazole Derivatives as Promising Antimicrobial Agents and Investigation of Structure Activity Relationships, J. Heterocycl. Chem., 57, 2288 (2020); https://doi.org/10.1002/jhet.3952
- D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De Logu, R. Meleddu, M. Saddi and M. Botta, Synthesis, Biological Evaluation, and SAR Study of Novel Pyrazole Analogues as Inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of Rigid Pyrazolones, Bioorg. Med. Chem., 17, 5716 (2009); https://doi.org/10.1016/j.bmc.2009.05.058
- Y. Ling, Z.Y. Hao, D. Liang, C.L. Zhang, Y.F. Liu and Y. Wang, The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design, Drug Design Dev. Ther., 15, 4289 (2021); https://doi.org/10.2147/DDDT.S329547
- M.K. Vekariya, R.H. Vekariya, K.D. Patel, N.P. Raval, P.U. Shah, D.P. Rajani and N.K. Shah, Pyrimidine-Pyrazole Hybrids as Morpholino-pyrimidine-Based Pyrazole Carboxamides: Synthesis, Characterisation, Docking, ADMET Study and Biological Evaluation, ChemistrySelect, 3, 6998 (2018); https://doi.org/10.1002/slct.201801011
- N. Devi, R. Shankar and V. Singh, 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-Fused/Substituted Frameworks, J. Heterocycl. Chem., 55, 373 (2018); https://doi.org/10.1002/jhet.3045
- R. Surendra Kumar, I.A. Arif, A. Ahamed and A. Idhayadhulla, Anti-Inflammatory and Antimicrobial Activities of Novel Pyrazole Analogues, Saudi J. Biol. Sci., 23, 614 (2016); https://doi.org/10.1016/j.sjbs.2015.07.005
- B. Parashar, S. Bharadwaj, A. Sahu, V.K. Sharma and P.B. Punjabi, Microwave Assisted Synthesis and Antimicrobial Activity of Some Novel Isonicotinoyl-Pyrazol Derivatives, Int. J. ChemTech Res., 2, 1454 (2010).
- D. Visagaperumal, R.J. Kumar, R. Vijayaraj and N. Anbalagan, Microwave Induced Synthesis of Some New 3-Substituted-1,3-thiazolidin-4-ones for their Potent Antimicrobial and Antitubercular Activities, Int. J. ChemTech. Res., 1, 1048 (2009).
- P. Kumari, S. Sood, A.Kumar and K. Singh, Microwave-Assisted Vilsmeier-Haack synthesis of Pyrazole-4-carbaldehydes, J. Heterocycl. Chem., 57, 796 (2000); https://doi.org/10.1002/jhet.3824
- U. Sahoo, B. Dhanya, A.K.Seth, A.K. Sen, S. Kumar, Y.C. Yadav, T.K. Ghelani and R. Chawla, Microwave Assisted Synthesis and Charact-erization of Certain Novel Bipyrazole Derivatives and their Antimicrobial Activities. Int. J. Pharm. Res., 2, 82 (2010).
- E. Szymanska and K. Kiec-Kononowicz, Antimycobacterial Activity of 5-Arylidene Aromatic Derivatives of Hydantoin, Farmaco, 57, 355 (2002); https://doi.org/10.1016/s0014-827x(01)01194-6
- N. Nayak, J. Ramprasad and U. Dalimba, New INH–Pyrazole Analogs: Design, Synthesis and Evaluation of Antitubercular and Antibacterial Activity, Bioorg. Med. Chem. Lett., 25, 5540 (2015); https://doi.org/10.1016/j.bmcl.2015.10.057
- P.K. Sahu, P.K. Sahu, S.K. Gupta, D. Thavaselvam and D.D. Agarwal, Synthesis and Evaluation of Antimicrobial Activity of 4H-Pyrimido-[2,1-b]benzothiazole, Pyrazole and Benzylidene Derivatives of Curcumin, Eur. J. Med. Chem., 54, 366 (2012); https://doi.org/10.1016/j.ejmech.2012.05.020
- K.V. Chikkula and R. Sundararajan, Analgesic, Anti-Inflammatory, and Antimicrobial Activities of Novel Isoxazole/Pyrimidine/Pyrazole Substituted Benzimidazole Analogs, Med. Chem. Res., 26, 3026 (2017); https://doi.org/10.1007/s00044-017-2000-0
- S.Y. Hassan, Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives, Molecules, 18, 2683 (2013); https://doi.org/10.3390/molecules18032683
- A.A. Napoleon, F.N. Khan, E.D. Jeong and E.H. Chung, Potential Anti-Tubercular Agents: Hexahydro-3-phenyl indazol-2-yl(pyridin-4-yl)-methanones from Anti-Tubercular Drug Isoniazid and bis(Substituted-benzylidene)cycloalkanones, Chin. Chem. Lett., 26, 567 (2015); https://doi.org/10.1016/j.cclet.2015.01.008
- S.I. Shaikh, Z. Zaheer, S.N. Mokale and D.K. Lokwani, Development of New Pyrazole Hybrids as Antitubercular Agents: Synthesis, Biological Evaluation and Molecular Docking Study, Int. J. Pharm. Pharm. Sci., 9, 11 (2017).
- M.N. Kumbar, R.R. Kamble, J.P. Dasappa, P.K. Bayannavar, H.A. Khamees, M. Mahendra, S.D. Joshi, S. Dodamani, V.P. Rasal and S. Jalalpure, 5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, Structural Characterization, Hirshfeld Analysis, Anti-Inflammatory and Antibacterial Studies, J. Mol. Struct., 1160, 63 (2018); https://doi.org/10.1016/j.molstruc.2018.01.047
- P. Aragade, S. Kolhe, H. Kamble, D. Baheti and V. Maddi, Synthesis and Preliminary Evaluation of Some Substituted Pyrazoles as Anticonvulsant Agents, Int. J. Drug Design Discov., 3, 688 (2012).
- V. Kumar, M. Kumar, V. Beniwal, G.K. Gupta, S. Kumar and R. Kataria, Synthesis of Some Aroylhydrazones and 2,5-Disubstituted-1,3,4-Oxadiazoles as DNA Photocleaving Agents, Med. Chem., 6, 474 (2016); https://doi.org/10.4172/2161-0444.1000386
- M.A. Ali, M. Shaharyar and E.D.E. Clercq, Synthesis of 5-(4-Hydroxy-3-methylphenyl)-5-(substituted phenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone Derivatives with Anti-Viral Activity, J. Enzyme Inhib. Med. Chem., 22, 702 (2007); https://doi.org/10.1080/14756360701265832
- R. Soliman and S.A. Darwish Antidiabetic Activity of Some 1-Substituted 3,5-Dimethylpyrazoles, J. Med. Chem., 531, 1659 (1983); https://doi.org/10.1021/jm00365a023
- W.S. Hamama, H.G. El-Gohary, M. Soliman and H.H. Zoorob, A Versatile Synthesis, PM3-Semiempirical, Antibacterial and Antitumor Evaluation of Some Bioactive Pyrazoles, J. Heterocycl. Chem., 49, 543 (2012); https://doi.org/10.1002/jhet.806
- A.K. Gadad, C.S. Mahajanshetti, S. Nimbalkar and A. Raichurkar, Preliminary Communication Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3,4-thiadiazole-2-Sulfonamide Derivatives, Eur. J. Med. Chem., 35, 853 (2000); https://doi.org/10.1016/s0223-5234(00)00166-5
- A.M. Katz, C.M. Pearson and J.M. Kennedy, A Clinical Trial of Indomethacin in Rheumatoid Arthritis, Clin. Pharmacol. Ther., 6, 25 (1964); https://doi.org/10.1002/cpt19656125
- S. Zargarnezhad, A. Gholami, M. Khoshneviszadeh, S.N. Abootalebi and Y. Ghasemi, Antimicrobial Activity of Isoniazid in Conjugation with Surface-Modified Magnetic Nanoparticles against Mycobacterium tuberculosis and Nonmycobacterial Microorganisms, J. Nanomater., 2020, 7372531 (2020); https://doi.org/10.1155/2020/7372531
- P.E. Almeida da Silva, D.F. Ramos, H.G. Bonacorso, A.I. de la Iglesia, M.R. Oliveira, T. Coelho, J. Navarini, H.R. Morbidoni, N. Zanatta and M.A.P. Martins, Synthesis and in vitro Antimycobacterial Activity of 3-Substituted 5-Hydroxy-5-Trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl)pyrazoles, Int. J. Antimicrob. Agents, 32, 139 (2008); https://doi.org/10.1016/j.ijantimicag.2008.03.019
- E. Akbas, I. Berber, A. Sener and B. Hasanov, Synthesis and Antibacterial Activity of 4-Benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic Acid and Derivatives, Farmaco, 60, 23 (2005); https://doi.org/10.1016/j.farmac.2004.09.003
- S.A. Malladi, A.M. Isloor, S.K. Peethambar and B.M. Ganesh, Synthesis and Antimicrobial Activity of Some New Pyrazole Containing Cyanopyridone Derivatives, Der Pharm. Chem., 4, 43 (2012).
- R. Sridhar, P.T. Perumal, S. Etti, G. Shanmugam, M.N. Ponnuswamy, V.R. Prabavathy and N. Mathivanan, Synthesis, Characterization and Antimicrobial Activity of Novel Ethyl 1-(N-substituted)-5-phenyl-1H-pyrazole-4-carboxylate Derivatives, Bioorg. Med. Chem. Lett., 14, 6035 (2004); https://doi.org/10.1016/j.bmcl.2004.09.066
- B. Chandrakantha, A.M. Isloor, P. Shetty, S. Isloor, S. Malladi and H.K. Fun, Synthesis, Characterization and Antimicrobial Activity of Novel Ethyl 1-(N-Substituted)-5-phenyl-1H-Pyrazole-4-carboxylate Derivatives, Med. Chem. Res., 21, 2702 (2012); https://doi.org/10.1007/s00044-011-9796-9
- S. Bondock, W. Fadaly and M.A. Metwally, Synthesis and Antimicrobial Activity of Some New Thiazole, Thiophene and Pyrazole Derivatives Containing Benzothiazole Moiety, Eur. J. Med. Chem., 45, 3692 (2010); https://doi.org/10.1016/j.ejmech.2010.05.018
- R. Nagamallu, B. Srinivasan, M.B. Ningappa and A.K. Kariyappa, Synthesis of Novel Coumarin Appended Bis(Formylpyrazole) Derivatives: Studies on Their Antimicrobial and Antioxidant Activities, Bioorg. Med. Chem. Lett., 26, 690 (2016); https://doi.org/10.1016/j.bmcl.2015.11.038
- J. Sun and Y. Zhou, Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyrazole Carboxylate, Molecules, 20, 4383 (2015); https://doi.org/10.3390/molecules20034383
- S. Du, Z. Tian, D. Yang, X. Li, H. Li, C. Jia, C. Che, M. Wang and Z. Qin, Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides, Molecules, 20, 8395 (2015); https://doi.org/10.3390/molecules20058395
- Z. Wu, D. Hu, J. Kuang, H. Cai, S. Wu and W. Xue, Synthesis and Antifungal Activity of N-(Substituted pyridinyl)-1-methyl(phenyl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide Derivatives, Molecules, 17, 14205 (2012); https://doi.org/10.3390/molecules171214205
- B.V. Kendre, M.G. Landge and S.R. Bhusare, Synthesis and Biological Evaluation of Some Novel Pyrazole, Isoxazole, Benzoxazepine, Benzothiazepine and Benzodiazepine Derivatives Bearing an Aryl Sulfonate Moiety as Antimicrobial and Anti-Inflammatory Agents, Arab. J. Chem., 12, 2091 (2019); https://doi.org/10.1016/j.arabjc.2015.01.007
- R. Nagamallu and K. Ajay Kumar, Synthesis and Biological Evaluation of Novel Formyl-Pyrazoles Bearing Coumarin Moiety as Potent Antimicrobial and Antioxidant Agents, Bioorg. Med. Chem. Lett., 23, 6406 (2013); https://doi.org/10.1016/j.bmcl.2013.09.053
- P.S. Patil, S.L. Kasare, N.B. Haval, V.M. Khedkar, P.P. Dixit, E.M. Rekha, D. Sriram and K.P. Haval, Novel isoniazid Embedded Triazole Derivatives: Synthesis, Antitubercular and Antimicrobial Activity Evaluation, Bioorg. Med. Chem. Lett., 30, 127434 (2020); https://doi.org/10.1016/j.bmcl.2020.127434
- V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Isonicotinic acid Hydrazide Derivatives: Synthesis, Antimicrobial Activity, and QSAR Studies, Med. Chem. Res., 21, 1451 (2012); https://doi.org/10.1007/s00044-011-9662-9
- E. Pahlavani, H. Kargar and N. Sepehri Rad, A Study on Antitubercular and Antimicrobial Activity of Isoniazid Derivative, Zahedan J. Res. Med. Sci., 17, 3 (2015); https://doi.org/10.17795/zjrms1010
References
P. Aragade, M. Palkar, P. Ronad and D. Satyanarayana, Coumarinyl Pyrazole Derivatives of INH: Promising Antimycobacterial Agents, Med. Chem. Res., 22, 2279 (2013); https://doi.org/10.1007/s00044-012-0222-8
A. Ansari, A. Ali, M. Asif and S. Shamsuzzaman, Review: Biologically Active Pyrazole Derivatives, New J. Chem., 41, 16 (2017); https://doi.org/10.1039/C6NJ03181A
S.G. Küçükgüzel, S. Rollas, H. Erdeniz, M. Kiraz, A.C. Ekinci and A. Vidin, Synthesis, Characterization and Pharmacological Properties of Some 4-arylhydrazono-2-pyrazoline-5-one Derivatives Obtained from Heterocyclic Amines, Eur. J. Med. Chem., 35, 761 (2000); https://doi.org/10.1016/S0223-5234(00)90179-X
R.F. Costa, L.C. Turones, K.V.N. Cavalcante, I.A. Rosa Jr., C.H. Xavier, L.P. Rosseto, H.B. Napolitano, P.F. da Silva Castro, M.L.F. Neto, G.M. Galvão, R. Menegatti, G.R. Pedrino, E.A. Costa, J.L.R Martins and J.O. Fajemiroye, Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations, Front. Pharmacol., 12, 666725 (2021); https://doi.org/10.3389/fphar.2021.666725
L. Knorr, Action of Ethyl Acetoacetate on Phenylhydrazine. I, Chem. Ber., 16, 2597 (1883); https://doi.org/10.1002/cber.188301602194
M.J. Naim, O. Alam, F. Nawaz, M.J. Alam and P. Alam, J. Pharm. Bioallied Sci., 8, 2 (2016); https://doi.org/10.4103/0975-7406.171694
K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, F. Al-aizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
S.S. Khan and A. Hasan, Synthesis of Some New Bioactive 1-N-Acid Hydrazide Substituted Pyrazolines, Heterocycl. Commun., 12, 377 (2006); https://doi.org/10.1515/HC.2006.12.5.377
P.A. Channar, S. Afzal, S.A. Ejaz, A. Saeed, F.A. Larik, P.A. Mahesar, J. Lecka, J. Sévigny, M.F. Erben and J. Iqbal, Exploration of Carboxy Pyrazole Derivatives: Synthesis, Alkaline Phosphatase, Nucleotide Pyrophosphatase/Phosphodiesterase and Nucleoside Triphosphate Diphosphohydrolase Inhibition Studies with Potential Anticancer Profile, Eur. J. Med. Chem., 156, 461 (2018); https://doi.org/10.1016/j.ejmech.2018.07.002
C.-Y. Zhang, X.-H. Liu, B.-L. Wang, S.-H. Wang and Z.-M. Li, Synthesis and Antifungal Activities of New Pyrazole Derivatives via 1,3-Dipolar Cycloaddition Reaction, Chem. Biol. Drug Des., 75, 489 (2010); https://doi.org/10.1111/j.1747-0285.2010.00948.x
M. Abdel-Aziz, G.E.D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
S. Bansal, M. Bala, S.K. Suthar, S. Choudhary, S. Bhattacharya, V. Bhardwaj, S. Singla and A. Joseph, Design and Synthesis of Novel 2-Phenyl-5-(1,3-diphenyl-1H-pyrazol-4-yl)-1,3,4-oxadiazoles as Selective COX-2 Inhibitors with Potent Anti-Inflammatory Activity, Eur. J. Med. Chem., 80, 167 (2014); https://doi.org/10.1016/j.ejmech.2014.04.045
P.F.M. Oliveira, B. Guidetti, A. Chamayou, C. André-Barrès, J. Madacki, J. Korduláková, G. Mori, B. Orena, L. Chiarelli, M. Pasca, C. Lherbet, C. Carayon, S. Massou, M. Baron and M. Baltas, Mechanochemical Synthesis and Biological Evaluation of Novel Isoniazid Derivatives with Potent Antitubercular Activity, Molecules, 22, 1457 (2017); https://doi.org/10.3390/molecules22091457
S. Fustero, M. Sánchez-Roselló, P. Barrio and A. Simón-Fuentes, From 2000 to Mid-2010: A Fruitful Decade for the Synthesis of Pyrazoles, Chem. Rev., 111, 6984 (2011); https://doi.org/10.1021/cr2000459
O.O. Komolafe, Antibiotic Resistance in Bacteria - An Emerging Public Health Problem, Malawi Med. J., 15, 63 (2003).
R.A. Devasia, T.F. Jones, J. Ward, L. Stafford, H. Hardin, C. Bopp, M. Beatty, E. Mintz and W. Schaffner, Endemically Acquired Foodborne Outbreak of Enterotoxin-Producing Escherichia coli Serotype O169: H41, Am. J. Med., 119, 168.e7 (2006); https://doi.org/10.1016/j.amjmed.2005.07.063
F.S. Al-Khattaf, A. Mani, A. Atef Hatamleh and I. Akbar, Antimicrobial and Cytotoxic Activities of Isoniazid Connected Menthone Derivatives and their Investigation of Clinical Pathogens Causing Infectious Disease, J. Infect. Public Health, 14, 533 (2021); https://doi.org/10.1016/j.jiph.2020.12.033
S.T. Murphy, H.L. Case, E. Ellsworth, S. Hagen, M. Huband, T. Joannides, C. Limberakis, K.R. Marotti, A.M. Ottolini, M. Rauckhorst, J. Starr, M. Stier, C. Taylor, T. Zhu, A. Blaser, W.A. Denny, G.-L. Lu, J.B. Smaill and F. Rivault, The Synthesis and Biological Evaluation of Novel Series of Nitrile-Containing Fluoroquinolones as Antibacterial Agents, Bioorg. Med. Chem. Lett., 17, 2150 (2007); https://doi.org/10.1016/j.bmcl.2007.01.090
S. Manfredini, R. Bazzanini, P.G. Baraldi, M. Guarneri, D. Simoni, M.E. Marongiu, A. Pani, E. Tramontano and P. La Colla, Pyrazole-Related Nucleosides. Synthesis and Antiviral/Antitumor Activity of Some Substituted Pyrazole and Pyrazolo[4,3-d]-1,2,3-triazin-4-one Nucleosides, J. Med. Chem., 35, 917 (1992); https://doi.org/10.1021/jm00083a017
R. Sridhar and P.T. Perumal, Synthesis of Novel 1H-Pyrazole-4-carboxylic Acid Esters by Conventional and Microwave Assisted Vilsmeier Cyclization of Hydrazones, Synth. Commun., 33, 1483 (2003); https://doi.org/10.1081/SCC-120018766
G. Sivaprasad, R. Sridhar and P.T. Perumal, Selective Synthesis of Some 4,5-Dihydro-2H-benzo[g]indazoles and 8,9-Dihydro-2H-benzo[e]-indazoles via the Vilsmeier-Haack Reaction under Thermal and Microwave Assisted Conditions, J. Heterocycl. Chem., 43, 389 (2006); https://doi.org/10.1002/jhet.5570430219
S.P. Ivonin, B.B. Kurpil’, O.O. Grygorenko and D.M. Volochnyuk, Heterocycl. Commun., 20, 351 (2014); https://doi.org/10.1515/hc-2014-0176
M. Ramadan, A.A. Aly, L.E.A. El-Haleem, M.B. Alshammari and S. Bräse, Molecules, 26, 4995 (2021); https://doi.org/10.3390/molecules26164995
K. Elumalai, M.A. Ali, M. Elumalai, K. Eluri and S. Srinivasan, Novel Isoniazid Cyclocondensed 1,2,3,4-Tetrahydropyrimidine Derivatives for Treating Infectious Disease: A Synthesis and in vitro Biological Evaluation, J. Acute Dis., 2, 316 (2013); https://doi.org/10.1016/S2221-6189(13)60151-1
M. Asif, A Review on Effect of Antitubercular Activity on Structural Modification of Isoniazide, J. Pharm. Appl. Chem., 3, 1 (2017); https://doi.org/10.18576/jpac/030101
C. Vilchèze and W.R. Jacobs Jr., The Mechanism of Isoniazid Killing: Clarity Through the Scope of Genetics, Annu. Rev. Microbiol., 61, 35 (2007); https://doi.org/10.1146/annurev.micro.61.111606.122346
D. Sriram, P. Yogeeswari and K. Madhu, Synthesis and in vitro and in vivo Antimycobacterial Activity of Isonicotinoyl Hydrazones, Bioorg. Med. Chem. Lett., 15, 4502 (2005); https://doi.org/10.1016/j.bmcl.2005.07.011
G. Ugurlu, Molecular Structures and Electronic Properties of Isonicotinic Acid (3-Methoxy-4-hydroxy-benzylidene)hydrazide: Ab initio and DFT Calculation, AIP Conf. Proc., 1815, 030017 (2017); https://doi.org/10.1063/1.4976365
D.G. Ghiano, A. Recio-Balsells, A. Bortolotti, L.A. Defelipe, A. Turjanski, H.R. Morbidoni and G.R. Labadie, New One-pot Synthesis of Anti-tuberculosis Compounds Inspired on Isoniazid, Eur. J. Med. Chem., 208, 112699 (2020); https://doi.org/10.1016/j.ejmech.2020.112699
A. Banerjee, E. Dubnau, A. Quemard, V. Balasubramanian, K.S. Um, T. Wilson, D. Collins, G. de Lisle and W.R. Jacobs Jr., inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis, Science, 263, 227 (1994); https://doi.org/10.1126/science.8284673
V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Isonicotinic Acid Hydrazide Derivatives: Synthesis, Antimicrobial Activity and QSAR Studies, Med. Chem. Res., 21, 1451 (2012); https://doi.org/10.1007/s00044-011-9662-9
K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 5, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
A. Kumar, P. Sharma, V.K. Gurram and N. Rane, Studies on Synthesis and Evaluation of Quantitative Structure–Activity Relationship of 10-Methyl-6-oxo-5-arylazo-6,7-dihydro-5H-[1,3]azaphospholo[1,5-d]-[1,4]benzodiazepin-2-phospha-3-ethoxycarbonyl-1-phosphorus Dichlorides, Bioorg. Med. Chem. Lett., 16, 2484 (2006); https://doi.org/10.1016/j.bmcl.2006.01.080
B. Desai, D. Sureja, Y. Naliapara, A. Shah and A.K. Saxena, Synthesis and QSAR Studies of 4-Substituted phenyl-2,6-dimethyl-3, 5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as Potential Antitubercular Agents, Bioorg. Med. Chem., 9, 1993 (2001); https://doi.org/10.1016/S0968-0896(01)00141-9
A. Imramovský, S. Polanc, J. Vinšová, M. Koèevar, J. Jampílek, Z. Reèková and J. Kaustová, A New Modification of Anti-tubercular Active Molecules, Bioorg. Med. Chem., 15, 2551 (2007); https://doi.org/10.1016/j.bmc.2007.01.051
G. Sbardella, A. Mai, M. Artico, M.G. Setzu, G. Poni and P. La Colla, New 6-Nitroquinolones: Synthesis and Antimicrobial Activities, Farmaco, 59, 463 (2004); https://doi.org/10.1016/j.farmac.2004.01.014
Ö.Ö. Güven, T. Erdogan, H. Göker and S. Yildiz, Synthesis and Antimicrobial Activity of Some Novel Phenyl and Benzimidazole Substituted Benzyl Ethers, Bioorg. Med. Chem. Lett., 17, 2233 (2007); https://doi.org/10.1016/j.bmcl.2007.01.061
R. Lan, Q. Liu, P. Fan, S. Lin, S.R. Fernando, D. McCallion, R. Pertwee and A. Makriyannis, Structure-Activity Relationships of Pyrazole Derivatives as Cannabinoid Receptor Antagonists, J. Med. Chem., 42, 769 (1999); https://doi.org/10.1021/jm980363y
Kumar KA, Govindappa VK, Nagamallu R, Nayaka MAH. Evaluation Of New Pyrazole Derivatives For Their Biological Activity/: Structure-Activity Relationship. 2013;(September 2015).
Power R. Kumar et al. 3, 4801 (2012).
G.M. Reddy, J.R. Garcia, G. Yuvaraja, M. Venkata Subbaiah and J.-C. Wen, Design, Synthesis of Tri-Substituted Pyrazole Derivatives as Promising Antimicrobial Agents and Investigation of Structure Activity Relationships, J. Heterocycl. Chem., 57, 2288 (2020); https://doi.org/10.1002/jhet.3952
D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De Logu, R. Meleddu, M. Saddi and M. Botta, Synthesis, Biological Evaluation, and SAR Study of Novel Pyrazole Analogues as Inhibitors of Mycobacterium tuberculosis: Part 2. Synthesis of Rigid Pyrazolones, Bioorg. Med. Chem., 17, 5716 (2009); https://doi.org/10.1016/j.bmc.2009.05.058
Y. Ling, Z.Y. Hao, D. Liang, C.L. Zhang, Y.F. Liu and Y. Wang, The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design, Drug Design Dev. Ther., 15, 4289 (2021); https://doi.org/10.2147/DDDT.S329547
M.K. Vekariya, R.H. Vekariya, K.D. Patel, N.P. Raval, P.U. Shah, D.P. Rajani and N.K. Shah, Pyrimidine-Pyrazole Hybrids as Morpholino-pyrimidine-Based Pyrazole Carboxamides: Synthesis, Characterisation, Docking, ADMET Study and Biological Evaluation, ChemistrySelect, 3, 6998 (2018); https://doi.org/10.1002/slct.201801011
N. Devi, R. Shankar and V. Singh, 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-Fused/Substituted Frameworks, J. Heterocycl. Chem., 55, 373 (2018); https://doi.org/10.1002/jhet.3045
R. Surendra Kumar, I.A. Arif, A. Ahamed and A. Idhayadhulla, Anti-Inflammatory and Antimicrobial Activities of Novel Pyrazole Analogues, Saudi J. Biol. Sci., 23, 614 (2016); https://doi.org/10.1016/j.sjbs.2015.07.005
B. Parashar, S. Bharadwaj, A. Sahu, V.K. Sharma and P.B. Punjabi, Microwave Assisted Synthesis and Antimicrobial Activity of Some Novel Isonicotinoyl-Pyrazol Derivatives, Int. J. ChemTech Res., 2, 1454 (2010).
D. Visagaperumal, R.J. Kumar, R. Vijayaraj and N. Anbalagan, Microwave Induced Synthesis of Some New 3-Substituted-1,3-thiazolidin-4-ones for their Potent Antimicrobial and Antitubercular Activities, Int. J. ChemTech. Res., 1, 1048 (2009).
P. Kumari, S. Sood, A.Kumar and K. Singh, Microwave-Assisted Vilsmeier-Haack synthesis of Pyrazole-4-carbaldehydes, J. Heterocycl. Chem., 57, 796 (2000); https://doi.org/10.1002/jhet.3824
U. Sahoo, B. Dhanya, A.K.Seth, A.K. Sen, S. Kumar, Y.C. Yadav, T.K. Ghelani and R. Chawla, Microwave Assisted Synthesis and Charact-erization of Certain Novel Bipyrazole Derivatives and their Antimicrobial Activities. Int. J. Pharm. Res., 2, 82 (2010).
E. Szymanska and K. Kiec-Kononowicz, Antimycobacterial Activity of 5-Arylidene Aromatic Derivatives of Hydantoin, Farmaco, 57, 355 (2002); https://doi.org/10.1016/s0014-827x(01)01194-6
N. Nayak, J. Ramprasad and U. Dalimba, New INH–Pyrazole Analogs: Design, Synthesis and Evaluation of Antitubercular and Antibacterial Activity, Bioorg. Med. Chem. Lett., 25, 5540 (2015); https://doi.org/10.1016/j.bmcl.2015.10.057
P.K. Sahu, P.K. Sahu, S.K. Gupta, D. Thavaselvam and D.D. Agarwal, Synthesis and Evaluation of Antimicrobial Activity of 4H-Pyrimido-[2,1-b]benzothiazole, Pyrazole and Benzylidene Derivatives of Curcumin, Eur. J. Med. Chem., 54, 366 (2012); https://doi.org/10.1016/j.ejmech.2012.05.020
K.V. Chikkula and R. Sundararajan, Analgesic, Anti-Inflammatory, and Antimicrobial Activities of Novel Isoxazole/Pyrimidine/Pyrazole Substituted Benzimidazole Analogs, Med. Chem. Res., 26, 3026 (2017); https://doi.org/10.1007/s00044-017-2000-0
S.Y. Hassan, Synthesis, Antibacterial and Antifungal Activity of Some New Pyrazoline and Pyrazole Derivatives, Molecules, 18, 2683 (2013); https://doi.org/10.3390/molecules18032683
A.A. Napoleon, F.N. Khan, E.D. Jeong and E.H. Chung, Potential Anti-Tubercular Agents: Hexahydro-3-phenyl indazol-2-yl(pyridin-4-yl)-methanones from Anti-Tubercular Drug Isoniazid and bis(Substituted-benzylidene)cycloalkanones, Chin. Chem. Lett., 26, 567 (2015); https://doi.org/10.1016/j.cclet.2015.01.008
S.I. Shaikh, Z. Zaheer, S.N. Mokale and D.K. Lokwani, Development of New Pyrazole Hybrids as Antitubercular Agents: Synthesis, Biological Evaluation and Molecular Docking Study, Int. J. Pharm. Pharm. Sci., 9, 11 (2017).
M.N. Kumbar, R.R. Kamble, J.P. Dasappa, P.K. Bayannavar, H.A. Khamees, M. Mahendra, S.D. Joshi, S. Dodamani, V.P. Rasal and S. Jalalpure, 5-(1-Aryl-3-(thiophen-2-yl)-1H-pyrazol-4-yl)-1H-tetrazoles: Synthesis, Structural Characterization, Hirshfeld Analysis, Anti-Inflammatory and Antibacterial Studies, J. Mol. Struct., 1160, 63 (2018); https://doi.org/10.1016/j.molstruc.2018.01.047
P. Aragade, S. Kolhe, H. Kamble, D. Baheti and V. Maddi, Synthesis and Preliminary Evaluation of Some Substituted Pyrazoles as Anticonvulsant Agents, Int. J. Drug Design Discov., 3, 688 (2012).
V. Kumar, M. Kumar, V. Beniwal, G.K. Gupta, S. Kumar and R. Kataria, Synthesis of Some Aroylhydrazones and 2,5-Disubstituted-1,3,4-Oxadiazoles as DNA Photocleaving Agents, Med. Chem., 6, 474 (2016); https://doi.org/10.4172/2161-0444.1000386
M.A. Ali, M. Shaharyar and E.D.E. Clercq, Synthesis of 5-(4-Hydroxy-3-methylphenyl)-5-(substituted phenyl)-4,5-dihydro-1H-1-pyrazolyl-4-pyridylmethanone Derivatives with Anti-Viral Activity, J. Enzyme Inhib. Med. Chem., 22, 702 (2007); https://doi.org/10.1080/14756360701265832
R. Soliman and S.A. Darwish Antidiabetic Activity of Some 1-Substituted 3,5-Dimethylpyrazoles, J. Med. Chem., 531, 1659 (1983); https://doi.org/10.1021/jm00365a023
W.S. Hamama, H.G. El-Gohary, M. Soliman and H.H. Zoorob, A Versatile Synthesis, PM3-Semiempirical, Antibacterial and Antitumor Evaluation of Some Bioactive Pyrazoles, J. Heterocycl. Chem., 49, 543 (2012); https://doi.org/10.1002/jhet.806
A.K. Gadad, C.S. Mahajanshetti, S. Nimbalkar and A. Raichurkar, Preliminary Communication Synthesis and Antibacterial Activity of Some 5-Guanylhydrazone/thiocyanato-6-arylimidazo[2,1-b]-1,3,4-thiadiazole-2-Sulfonamide Derivatives, Eur. J. Med. Chem., 35, 853 (2000); https://doi.org/10.1016/s0223-5234(00)00166-5
A.M. Katz, C.M. Pearson and J.M. Kennedy, A Clinical Trial of Indomethacin in Rheumatoid Arthritis, Clin. Pharmacol. Ther., 6, 25 (1964); https://doi.org/10.1002/cpt19656125
S. Zargarnezhad, A. Gholami, M. Khoshneviszadeh, S.N. Abootalebi and Y. Ghasemi, Antimicrobial Activity of Isoniazid in Conjugation with Surface-Modified Magnetic Nanoparticles against Mycobacterium tuberculosis and Nonmycobacterial Microorganisms, J. Nanomater., 2020, 7372531 (2020); https://doi.org/10.1155/2020/7372531
P.E. Almeida da Silva, D.F. Ramos, H.G. Bonacorso, A.I. de la Iglesia, M.R. Oliveira, T. Coelho, J. Navarini, H.R. Morbidoni, N. Zanatta and M.A.P. Martins, Synthesis and in vitro Antimycobacterial Activity of 3-Substituted 5-Hydroxy-5-Trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl)pyrazoles, Int. J. Antimicrob. Agents, 32, 139 (2008); https://doi.org/10.1016/j.ijantimicag.2008.03.019
E. Akbas, I. Berber, A. Sener and B. Hasanov, Synthesis and Antibacterial Activity of 4-Benzoyl-1-methyl-5-phenyl-1H-pyrazole-3-carboxylic Acid and Derivatives, Farmaco, 60, 23 (2005); https://doi.org/10.1016/j.farmac.2004.09.003
S.A. Malladi, A.M. Isloor, S.K. Peethambar and B.M. Ganesh, Synthesis and Antimicrobial Activity of Some New Pyrazole Containing Cyanopyridone Derivatives, Der Pharm. Chem., 4, 43 (2012).
R. Sridhar, P.T. Perumal, S. Etti, G. Shanmugam, M.N. Ponnuswamy, V.R. Prabavathy and N. Mathivanan, Synthesis, Characterization and Antimicrobial Activity of Novel Ethyl 1-(N-substituted)-5-phenyl-1H-pyrazole-4-carboxylate Derivatives, Bioorg. Med. Chem. Lett., 14, 6035 (2004); https://doi.org/10.1016/j.bmcl.2004.09.066
B. Chandrakantha, A.M. Isloor, P. Shetty, S. Isloor, S. Malladi and H.K. Fun, Synthesis, Characterization and Antimicrobial Activity of Novel Ethyl 1-(N-Substituted)-5-phenyl-1H-Pyrazole-4-carboxylate Derivatives, Med. Chem. Res., 21, 2702 (2012); https://doi.org/10.1007/s00044-011-9796-9
S. Bondock, W. Fadaly and M.A. Metwally, Synthesis and Antimicrobial Activity of Some New Thiazole, Thiophene and Pyrazole Derivatives Containing Benzothiazole Moiety, Eur. J. Med. Chem., 45, 3692 (2010); https://doi.org/10.1016/j.ejmech.2010.05.018
R. Nagamallu, B. Srinivasan, M.B. Ningappa and A.K. Kariyappa, Synthesis of Novel Coumarin Appended Bis(Formylpyrazole) Derivatives: Studies on Their Antimicrobial and Antioxidant Activities, Bioorg. Med. Chem. Lett., 26, 690 (2016); https://doi.org/10.1016/j.bmcl.2015.11.038
J. Sun and Y. Zhou, Synthesis and Antifungal Activity of the Derivatives of Novel Pyrazole Carboxamide and Isoxazolol Pyrazole Carboxylate, Molecules, 20, 4383 (2015); https://doi.org/10.3390/molecules20034383
S. Du, Z. Tian, D. Yang, X. Li, H. Li, C. Jia, C. Che, M. Wang and Z. Qin, Synthesis, Antifungal Activity and Structure-Activity Relationships of Novel 3-(Difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylic Acid Amides, Molecules, 20, 8395 (2015); https://doi.org/10.3390/molecules20058395
Z. Wu, D. Hu, J. Kuang, H. Cai, S. Wu and W. Xue, Synthesis and Antifungal Activity of N-(Substituted pyridinyl)-1-methyl(phenyl)-3-(trifluoromethyl)-1H-pyrazole-4-carboxamide Derivatives, Molecules, 17, 14205 (2012); https://doi.org/10.3390/molecules171214205
B.V. Kendre, M.G. Landge and S.R. Bhusare, Synthesis and Biological Evaluation of Some Novel Pyrazole, Isoxazole, Benzoxazepine, Benzothiazepine and Benzodiazepine Derivatives Bearing an Aryl Sulfonate Moiety as Antimicrobial and Anti-Inflammatory Agents, Arab. J. Chem., 12, 2091 (2019); https://doi.org/10.1016/j.arabjc.2015.01.007
R. Nagamallu and K. Ajay Kumar, Synthesis and Biological Evaluation of Novel Formyl-Pyrazoles Bearing Coumarin Moiety as Potent Antimicrobial and Antioxidant Agents, Bioorg. Med. Chem. Lett., 23, 6406 (2013); https://doi.org/10.1016/j.bmcl.2013.09.053
P.S. Patil, S.L. Kasare, N.B. Haval, V.M. Khedkar, P.P. Dixit, E.M. Rekha, D. Sriram and K.P. Haval, Novel isoniazid Embedded Triazole Derivatives: Synthesis, Antitubercular and Antimicrobial Activity Evaluation, Bioorg. Med. Chem. Lett., 30, 127434 (2020); https://doi.org/10.1016/j.bmcl.2020.127434
V. Judge, B. Narasimhan, M. Ahuja, D. Sriram, P. Yogeeswari, E. De Clercq, C. Pannecouque and J. Balzarini, Isonicotinic acid Hydrazide Derivatives: Synthesis, Antimicrobial Activity, and QSAR Studies, Med. Chem. Res., 21, 1451 (2012); https://doi.org/10.1007/s00044-011-9662-9
E. Pahlavani, H. Kargar and N. Sepehri Rad, A Study on Antitubercular and Antimicrobial Activity of Isoniazid Derivative, Zahedan J. Res. Med. Sci., 17, 3 (2015); https://doi.org/10.17795/zjrms1010