Main Article Content

Abstract

Isoniazid (INH) is one of the most successful tuberculosis medications in the market today. In particular, isoniazid is used as a prophylaxis medication to avoid resurgence of illness in those who have underlying Mycobacterium tuberculosis (MTB) infection. The mode of action of isoniazid is complicated and incorporates a number of distinct aspects in which various biomolecular routes are impacted, including mycolic acid production. Catalase-peroxidase (KatG) activates the prodrug isoniazid and enzymes such as β-ketoacyl ACP synthase (KasA) and enoyl acyl carrier protein (ACP) reductase target the active isoniazid products. Various genes in diverse biochemical networks and pathways are involved in the physiological mechanisms of isoniazid resistance. Isoniazid resistance is the most common of all clinical drug-resistant isolates, with incidence in some areas of up to 20 to 30%. In this review article, several existing components that may influence to the complexities of isoniazid function including mechanism of action, resistance mechanisms in MTB, along with their history, different synthetic procedures, uses, dosage forms, side effects, adverse drug reactions, physico-chemical characteristics, ADME properties, contraindications as well as future perspectives are discussed. Studies of pharmacokinetics have found that the cause of the drug mediated hepatotoxicity is possible by metabolism of isoniazid. Because of inter-individual heterogeneity of polymorphism that affect isoniazid metabolism rates, customized medicines may be required in various populations to prevent hepatotoxicity. The isoniazid multidrug combination treatment which would proved to be effective tuberculosis treatment in future. Further exploration is needed for better comprehension of pathogenesis mechanism of Mycobacterium tuberculosis (MTB) and drug resistance studies are required for building up better therapeutics and diagnostic against tuberculosis.

Keywords

Mycobacterium tuberculosis Drug resistance mechanisms Isoniazid Catalase-peroxidase β-Ketoacyl ACP synthase.

Article Details

How to Cite
Saini, V., Goyal, A., & Kumar, A. (2022). Isoniazid: An Exploratory Review. Asian Journal of Organic & Medicinal Chemistry, 7(1), 1–10. https://doi.org/10.14233/ajomc.2022.AJOMC-P373

References

  1. M.O. Rodrigues, J.B. Cantos, C.R. D’Oca, K.L. Soares, T.S. Coelho, L.A. Piovesan, D. Russowsky, P.A. da Silva and M.G. D’Oca, Synthesis and Antimycobacterial Activity of Isoniazid Derivatives from Renew-able Fatty Acids, Bioorg. Med. Chem., 21, 6910 (2013); https://doi.org/10.1016/j.bmc.2013.09.034
  2. A. Tripathi, Y.F. Yadaf, D. Bilehal, S. Nayak and S.L. Gaonkar, A Review on Synthesis of Isoniazid Derivatives and their Biological Properties, Int. J. Pharm. Res., 11, 21 (2019).
  3. F. Lentz, N. Reiling, A. Martins, J. Molnár and A. Hilgeroth, Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis, Molecules, 23, 825 (2018); https://doi.org/10.3390/molecules23040825
  4. E.M. Carvalho, Ph.D. Thesis, Metallo-Drugs as Nitric Oxide (NO) and/or Nitroxyl (HNO) Donors: Development of New Agents and Investigation of Anticancer, Antihypertensive and Antituberculosis Activities. Université Paul Sabatier, Toulouse, France (2020).
  5. B. Saifullah, P.E.L. Arulselvan, M.E. Zowalaty, S. Fakurazi, T.J. Webster, B.M. Geilich and M.Z. Hussein, Development of a Biocompatible Nanodelivery System for Tuberculosis Drugs based on Isoniazid-Mg/Al Layered Double Hydroxide, Int. J. Nanomedicine, 9, 4749 (2014); https://doi.org/10.2147/IJN.S63608
  6. E.R. Erwin, A.P. Addison, S.F. John, O.A. Olaleye and R.C. Rosell, Pharmacokinetics of Isoniazid: The Good, the Bad, and the Alternatives, Tuberculosis, 116, S66 (2019); https://doi.org/10.1016/j.tube.2019.04.012
  7. D.G. Ghiano, A. Recio-Balsells, A. Bortolotti, L.A. Defelipe, A. Turjanski, H.R. Morbidoni and G.R. Labadie, New One-Pot Synthesis of Anti-tuberculosis Compounds Inspired on Isoniazid, Eur. J. Med. Chem., 208, 112699 (2020); https://doi.org/10.1016/j.ejmech.2020.112699
  8. H.M. Hassan, H.L. Guo, B.A. Yousef, Z. Luyong and J. Zhenzhou, Hepatotoxicity Mechanisms of Isoniazid: A Mini-Review, J. Appl. Toxicol., 35, 1427 (2015); https://doi.org/10.1002/jat.3175
  9. Y.Q. Hu, S. Zhang, F. Zhao, C. Gao, L.S. Feng, Z.S. Lv, Z. Xu and X. Wu, Isoniazid Derivatives and their Anti-Tubercular Activity, Eur. J. Med. Chem., 133, 255 (2017); https://doi.org/10.1016/j.ejmech.2017.04.002
  10. W.M. Eldehna, M. Fares, M.M. Abdel-Aziz and H.A. Abdel-Aziz, Design, Synthesis and Antitubercular Activity of Certain Nicotinic Acid Hydrazides, Molecules, 20, 8800 (2015); https://doi.org/10.3390/molecules20058800
  11. A. Rani, M.D. Johansen, F. Roquet-Banères, L. Kremer, P. Awolade, O. Ebenezer, P. Singh, Sumanjit and V. Kumar, Design and Synthesis of 4-Aminoquinoline-Isoindoline-dione-Isoniazid Triads as Potential Anti-Mycobacterials, Bioorg. Med. Chem. Lett., 30, 127576 (2020); https://doi.org/10.1016/j.bmcl.2020.127576
  12. E.H. Robitzek and I.J. Selikoff, Hydrazine Derivatives of Isonicotinic Acid (Rimifon Marsilid) in the Treatment of Active Progressive Caseous Pneumonic Tuberculosis; A Preliminary Report, Am. Rev. Tuberc., 65, 402 (1952); https://doi.org/10.1164/art.1952.65.4.402
  13. J.B. Whitney and M.A. Wainberg, Isoniazid, The Frontline of Resistance in Mycobacterium tuberculosis, McGill J. Med., 6, 114 (2002); https://doi.org/10.26443/mjm.v6i2.686
  14. E. Vavrikova, S. Polanc, M. Kocevar, J. Kosmrlj, K. Horvati, S. Bosze, J. Stolarikova, A. Imramovsky and J. Vinsova, New Series of Isoniazid Hydrazones Linked with Electron-Withdrawing Substituents, Eur. J. Med. Chem., 46, 5902 (2011); https://doi.org/10.1016/j.ejmech.2011.09.054
  15. K. Elumalai, M.A. Ali, M. Elumalai, K. Eluri and S. Srinivasan, Novel Isoniazid Cyclocondensed 1,2,3,4-Tetrahydropyrimidine Derivatives for Treating Infectious Disease: A Synthesis and in vitro Biological Evaluation, J. Acute Dis., 2, 316 (2013); https://doi.org/10.1016/S2221-6189(13)60151-1
  16. F F.P. Silva Jr., J. Ellena, M.L. Ferreira, Y.P. Mascarenhas, M.V.N. de Souza, T.R.A. Vasconcelos, J.L. Wardell and S.M.S.V. Wardell, Experimental and Theoretical Structure Characterization of Two Isoniazid Derivatives: 2,4-Difluoro-N¢-isonicotinoylbenzohydrazide and 2,4-Dichloro-N¢-isonicotinoylbenzohydrazide Hydrochloride, J. Mol. Struct., 788, 63 (2006); https://doi.org/10.1016/j.molstruc.2005.11.023
  17. D. Sriram, P. Yogeeswari and K. Madhu, Synthesis and in vitro and in vivo Antimycobacterial Activity of Isonicotinoyl Hydrazones, Bioorg. Med. Chem. Lett., 15, 4502 (2005); https://doi.org/10.1016/j.bmcl.2005.07.011
  18. E. Pahlavani, H. Kargar and N. Sepehri Rad, A Study on Antitubercular and Antimicrobial Activity of Isoniazid Derivative, Zahedan J. Res. Med. Sci., 17, 1 (2015); https://doi.org/10.17795/zjrms1010
  19. D. Sriram, P. Yogeeswari and G. Gopal, Synthesis, Anti-HIV and Antitubercular Activities of Lamivudine Prodrugs, Eur. J. Med. Chem., 40, 1373 (2005); https://doi.org/10.1016/j.ejmech.2005.07.006
  20. S. Haider, Z.S. Saify, N. Mushtaq, Z.M.M.-N. Tabinda, A. Arain, S.M. Ghufran Saeed and S. Ashraf, Synthesis of 4-(1-pyrrolidinyl)piperidine Derivatives as Anti-bacterial and Anti-fungal Agents, World J. Pharm. Res., 3, 11 (2014).
  21. M.C.S. Lourenço, M.L. Ferreira, M.V.N. de Souza, M.A. Peralta, T.R.A. Vasconcelos and M.G.M.O. Henriques, Synthesis and Anti-Mycobacterial Activity of (E)-N¢-(Monosubstituted-benzylidene)-isonicotinohydrazide Derivatives, Eur. J. Med. Chem., 43, 1344 (2008); https://doi.org/10.1016/j.ejmech.2007.08.003
  22. H.H. Jardosh and M.P. Patel, Design and Synthesis of Biquinolone–Isoniazid Hybrids as a New Class of Antitubercular and Antimicrobial Agents, Eur. J. Med. Chem., 65, 348 (2013); https://doi.org/10.1016/j.ejmech.2013.05.003
  23. M.C.S. Lourenço, M.V.N. Souza, A.C. Pinheiro, M.L. Ferreira, R.S.B. Gonçalves, T.C.M. Nogueira and M.A. Peralta, Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues, ARKIVOC, 181 (2007); https://doi.org/10.3998/ark.5550190.0008.f18
  24. G. Middlebrook, Sterilization of Tubercle bacilli by Isonicotinic Acid Hydrazide and the Incidence of Variants Resistant to the Drug in vitro, Am. Rev. Tuberc., 65, 765 (1952).
  25. D.A. Mitchison and J.B. Selkon, The Bactericidal Activities of Antituberculous Drugs, Am. Rev. Tubercul. Pulmon. Dis., 74, 109 (1956).
  26. F. Bardou, C. Raynaud, C. Ramos, M.A. Laneelle and G. Lanrelle, Mechanism of Isoniazid Uptake in Mycobacterium tuberculosis, Microbiology, 144, 2539 (1998); https://doi.org/10.1099/00221287-144-9-2539
  27. W.B. Schaefer, The Effect of Isoniazid on Growing and Resting Tubercle bacilli, Am. Rev. Tuberc., 69, 125 (1954); https://doi.org/10.1164/art.1954.69.1.125
  28. N.K. Dutta and P.C. Karakousis, Eds.: D.L. Mayers, J.D. Sobel, M. Ouellette, K.S. Kaye and D. Marchaim, Mechanisms of Action and Resistance of the Antimycobacterial Agents, In: Antimicrobial Drug Resistance: Mechanisms of Drug Resistance, Cham: Springer International Publishing, vol. 1, pp. 359-383 (2017).
  29. R.A. Slayden and C.E. Barry III, The Genetics and Biochemistry of Isoniazid Resistance in Mycobacterium tuberculosis, Microbes Infect., 2, 659 (2000); https://doi.org/10.1016/S1286-4579(00)00359-2
  30. T.W. Lin, M.M. Melgar, D. Kurth, S.J. Swamidass, J. Purdon, T. Tseng, G. Gago, P. Baldi, H. Gramajo and S.C. Tsai, Structure-based Inhibitor Design of AccD5, An Essential Acyl-CoA Carboxylase Carboxyl-transferase Domain of Mycobacterium tuberculosis, Proc. Natl. Acad. Sci. USA, 103, 3072 (2006); https://doi.org/10.1073/pnas.0510580103
  31. K. Takayama, L. Wang and R.S. Merkal, Scanning Electron Microscopy of the H37Ra Strain of Mycobacterium tuberculosis Exposed to Isoniazid, Antimicrob. Agents Chemother., 4, 62 (1973); https://doi.org/10.1128/AAC.4.1.62
  32. J. Testart, S. Chamoun and P. Jouanneau, Chirurgie memoires de l’Acad. de chirurgie, 103, 305 (1977).
  33. M.A. Heazell, Is ATP an Inhibitory Neurotransmitter in the Rat Stomach, Br. J. Pharmacol., 55, 285 (1975).
  34. F.G. Winder and P.B. Collins, Inhibition by Isoniazid of Synthesis of Mycolic Acids in Mycobacterium tuberculosis, J. Gen. Microbiol., 63, 41 (1970); https://doi.org/10.1099/00221287-63-1-41
  35. K. Takayama, E.L. Armstrong and H.L. David, Restoration of Mycolate Synthetase Activity in Mycobacterium tuberculosis Exposed to Isoniazid, Am. Rev. Respir. Dis., 110, 43 (1974); https://doi.org/10.1164/arrd.1974.110.1.43
  36. K. Takayama, L. Wang and H.L. David, Effect of Isoniazid on the in vivo Mycolic Acid Synthesis, Cell Growth, and Viability of Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 2, 29 (1972); https://doi.org/10.1128/AAC.2.1.29
  37. K. Takayama, A.D. Keith and W. Snipes, Effect of Isoniazid on the Protoplasmic Viscosity in Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 7, 22 (1975); https://doi.org/10.1128/AAC.7.1.22
  38. L.A. Davidson and K. Takayama, Isoniazid Inhibition of the Synthesis of Monounsaturated Long-Chain Fatty Acids in Mycobacterium tuberculosis H37Ra, Antimicrob. Agents Chemother., 16, 104 (1979); https://doi.org/10.1128/AAC.16.1.104
  39. C. Vilcheze and W.R. Jacobs, Isolation and Analysis of Mycobacterium tuberculosis Mycolic Acids, Curr. Protoc. Microbiol., 5, 10A (2007); https://doi.org/10.1002/9780471729259.mc10a03s05
  40. S. Bhakta, G.S. Besra, A.M. Upton, T. Parish, C. Sholto-Douglas-Vernon, K.J. Gibson, S. Knutton, S. Gordon, R.P. DaSilva, M.C. Anderton and E. Sim, Arylamine N-Acetyltransferase is Required for Synthesis of Mycolic Acids and Complex Lipids in Mycobacterium bovis BCG and Represents a Novel Drug Target, J. Exp. Med., 199, 1191 (2004); https://doi.org/10.1084/jem.20031956
  41. A. Banerjee, E. Dubnau, A. Quemard, V. Balasubramanian, K.S. Um, T. Wilson, D. Collins, G. De Lisle and W.R. Jacobs Jr., inhA, a Gene Encoding a Target for Isoniazid and Ethionamide in Mycobacterium tuberculosis, Science, 263, 227 (1994); https://doi.org/10.1126/science.8284673
  42. K. Mdluli, R.A. Slayden, Y. Zhu, S. Ramaswamy, X. Pan, D. Mead, D.D. Crane, J.M. Musser and C.E. Barry III, Inhibition of a Mycobacterium tuberculosis b-Ketoacyl ACP Synthase by Isoniazid, Science, 280, 1607 (1998); https://doi.org/10.1126/science.280.5369.1607
  43. W. Bauer, The Adolescent Who has Lost a Significant Other, IMJ III Med. J., 148, 614 (1975).
  44. J. Youatt, The Metabolism of Isoniazid and Other Hydrazides by Mycobactria, Aust. J. Exp. Biol. Med. Sci., 38, 245 (1960); https://doi.org/10.1038/icb.1960.25
  45. J. Youatt, Pigments Produced by Mycobacteria on Exposure to Isoniazid, Aust. J. Exp. Biol. Med. Sci., 39, 93 (1961); https://doi.org/10.1038/icb.1961.9
  46. P.R. Gangadharam, F.M. Harold and W.B. Schaefer, Selective Inhibition of Nucleic Acid Synthesis in Mycobacterium tuberculosis by Isoniazid, Nature, 198, 712 (1963); https://doi.org/10.1038/198712b0
  47. M. Tsukamura and S. Tsukamura, The Fate of 35S-Labeled Mycobacterium in Animal Body. Modification of 35S Distribution in Mouse Organs by Adjuvant, Jpn. J. Tuberc., 11, 14 (1964).
  48. I. Chopra and P. Brennan, Molecular Action of Anti-Mycobacterial Agents, Tuber. Lung Dis., 78, 89 (1998); https://doi.org/10.1016/S0962-8479(98)80001-4
  49. F.G. Winder and S.A. Rooney, The Effects of Isoniazid on the Carbohydrates of Mycobacterium tuberculosis BCG, Biochem. J., 117, 355 (1970); https://doi.org/10.1042/bj1170355
  50. A. Bekierkunst, Nicotinamide-Adenine Dinucleotide in Tubercle bacilli Exposed to Isoniazid, Science, 152, 525 (1966); https://doi.org/10.1126/science.152.3721.525
  51. L.J. Zatman, N.O. Kaplan, S.P. Colowick and M.M. Ciotti, The isolation and Properties of the Isonicotinic Acid Hydrazide Analogue of Diphosphopyridine Nucleotide, J. Biol. Chem., 209, 467 (1954); https://doi.org/10.1016/S0021-9258(18)65474-2
  52. J. Adewuyi, H. Ibrahim and A.O. Oyewale, Synthesis, Characterization and Antimicrobial Evaluation of Novel 2,5-Disubstituted 1,3,4-Oxadiazole Derivatives with Two Oxadiazole Rings, 4, 9 (2011).
  53. A.M. El-Brashy and S.M. El-Ashry, Colorimetric and Titrimetric Assay of Isoniazid, J. Pharm. Biomed. Anal., 10, 421 (1992); https://doi.org/10.1016/0731-7085(92)80060-Z
  54. J.R. Mitchell, H.J. Zimmerman, K.G. Ishak, U.P. Thorgeirsson, J.A. Timbrell, W.R. Snodgrass and S.D. Nelson, Isoniazid Liver Injury: Clinical Spectrum, Pathology and Probable Pathogenesis, Ann. Intern. Med., 84, 181 (1976); https://doi.org/10.7326/0003-4819-84-2-181
  55. U. Aleem, R. Shah, N. Khan and M. Suliman, Hepatoprotective Effects of Honey in Isoniazid (INH) Induced Hepatotoxicity in Rabbits, Prof. Med. J., 25, 1587 (2018); https://doi.org/10.29309/TPMJ/18.4635
  56. T.R. Sterling, M.E. Villarino, A.S. Borisov, N. Shang, F. Gordin, E. Bliven-Sizemore, J. Hackman, C.D. Hamilton, D. Menzies, A. Kerrigan, S.E. Weis, M. Weiner, D. Wing, M.B. Conde, L. Bozeman, C.R. Horsburgh Jr. and R.E. Chaisson, Three Months of Rifapentine and Isoniazid for Latent Tuberculosis Infection, N. Engl. J. Med., 365, 2155 (2011); https://doi.org/10.1056/NEJMoa1104875
  57. H.F. Chambers, J. Turner, G.F. Schecter, M. Kawamura and P.C. Hopewell, Antimicrob. Agents Chemother., 49, 2816 (2005); https://doi.org/10.1128/AAC.49.7.2816-2821.2005
  58. A.K. Kumar, V. Chandrasekaran, A.K. Kumar, M. Kawaskar, J. Lavanya, S. Swaminathan and G. Ramachandran, Food Significantly Reduces Plasma Concentrations of First-Line Anti-tuberculosis Drugs, Indian J. Med. Res., 145, 530 (2017) https://doi.org/10.4103/ijmr.IJMR_552_15
  59. A. Hurwitz and D.L. Schlozman, Effects of Antacids on Gastrointestinal Absorption of Isoniazid in Rat and Man, Am. Rev. Respir. Dis., 109, 41 (1974).
  60. N. Singh, A. Golani, Z. Patel and A. Maitra, Transfer of Isoniazid from Circulation to Breast Milk in Lactating Women on Chronic Therapy for Tuberculosis, Br. J. Clin. Pharmacol., 65, 418 (2008); https://doi.org/10.1111/j.1365-2125.2007.03061.x
  61. K. Gausi, L. Wiesner, J. Norman, C.L. Wallis, C. Onyango-Makumbi, T. Chipato, D.W. Haas, R. Browning, N. Chakhtoura, G. Montepiedra, L. Aaron, K. McCarthy, S. Bradford, T. Vhembo, L. Stranix-Chibanda, G.R. Masheto, A. Violari, B.T. Mmbaga, L. Aurpibul, R. Bhosale, N. Nevrekhar, V. Rouzier, E. Kabugho, M. Mutambanengwe, V. Chanaiwa, M. Nyati, T. Mhembere, F. Tongprasert, A. Hesseling, K. Shin, B. Zimmer, D. Costello, P. Jean-Philippe, T.R. Sterling, G. Theron, A. Weinberg, A. Gupta and P. Denti, Pharmacokinetics and Drug-Drug Interactions of Isoniazid and Efavirenz in Pregnant Women Living With HIV in High TB Incidence Settings: Importance of Genotyping, Clin. Pharmacol. Ther., 109, 1034 (2021); https://doi.org/10.1002/cpt.2044
  62. C.M. Lee, S.S. Lee, J.M. Lee, H.C. Cho, W.S. Kim, H.J. Kim, C.Y. Ha, H.J. Kim, T.H. Kim, W.T. Jung and O.J. Lee, Early Monitoring for Detection of Antituberculous Drug-induced Hepatotoxicity, Korean J. Intern. Med., 31, 65 (2016); https://doi.org/10.3904/kjim.2016.31.1.65
  63. B. Myers, T.C. Bouton, E.J. Ragan, L.F. White, H. McIlleron, D. Theron, C.D.H. Parry, C.R. Horsburgh, R.M. Warren and K.R. Jacobson, Impact of Alcohol Consumption on Tuberculosis Treatment Outcomes: A Prospective Longitudinal Cohort Study Protocol, BMC Infect. Dis., 18, 488 (2018); https://doi.org/10.1186/s12879-018-3396-y
  64. J.T. Wilcke, M. Døssing, H.R. Angelo, D. Askgaard, A. Rønn and H.R. Christensen, Unchanged Acetylation of Isoniazid by Alcohol Intake, Int. J. Tuberc. Lung Dis., 8, 1373 (2004).
  65. S.A. Gilroy, M.A. Rogers and D.C. Blair, Treatment of Latent Tuberculosis Infection in Patients Aged ³35 Years, Clin. Infect. Dis., 31, 826 (2000); https://doi.org/10.1086/314037
  66. M. Stettner, D. Steinberger, C.J. Hartmann, T. Pabst, L. Konta, H.P. Hartung and B.C. Kieseier, Isoniazid-Induced Polyneuropathy in a Tuberculosis Patient – Implication for Individual Risk Stratification with Genotyping?, Brain Behav., 5, e00326 (2015); https://doi.org/10.1002/brb3.326
  67. A.T. Mafukidze, M. Calnan and J. Furin, Peripheral Neuropathy in Persons with Tuberculosis, J. Clin. Tuberc. Other Mycobact. Dis., 2, 5 (2016); https://doi.org/10.1016/j.jctube.2015.11.002
  68. M. Si, H. Li, Y. Chen and H. Peng H. Ethambutol and Isoniazid Induced Severe Neurotoxicity in a Patient Undergoing Continuous Ambulatory Peritoneal Dialysis, Case Rep., 2018, bcr2017223187 (2018); https://doi.org/10.1136/bcr-2017-223187
  69. D.E. Snider Jr., Pyridoxine Supplementation During Isoniazid Therapy, Tubercle, 61, 191 (1980); https://doi.org/10.1016/0041-3879(80)90038-0
  70. M. Bhargava and A. Bhargava, Pyridoxine for Patients Suffering from Drug-Susceptible Tuberculosis in India, Public Health Action, 8, 97 (2018); https://doi.org/10.5588/pha.18.0017
  71. P.S. Patil, S.L. Kasare, N.B. Haval, V.M. Khedkar, P.P. Dixit, E.M. Rekha, D. Sriram and K.P. Haval, Novel Isoniazid Embedded Triazole Derivatives: Synthesis, Antitubercular and Antimicrobial Activity Evaluation, Bioorg. Med. Chem. Lett., 30, 127434 (2020); https://doi.org/10.1016/j.bmcl.2020.127434
  72. A.L. Goldman and S.S. Braman, Isoniazid: A Review with Emphasis on Adverse Effects, Chest, 62, 71 (1972); https://doi.org/10.1378/chest.62.1.71
  73. A.K. Dutt, D. Moers and W.W. Stead, Undesirable Side Effects of Isoniazid and Rifampin in Largely Twice-Weekly Short-Course Chemotherapy for Tuberculosis, Am. Rev. Respir. Dis., 128, 419 (1983); https://doi.org/10.1164/arrd.1983.128.3.419
  74. B.B. Maiha, A. Bako, S. Anafi, M.S. Yusuf and A.M. Kabiru, Amelioration of Isoniazid induced Oxidative Stress and Hematotoxicity by Vitamin C in Wistar Rats, Nigerian J. Pharm. Appl. Sci. Res., 9, 23 (2020).
  75. N.A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A.S. Hussain, H.E. Junginger, S.A. Stavchansky, K.K. Midha, V.P. Shah and G.L. Amidon, Molecular Properties of WHO Essential Drugs and Provisional Biopharmaceutical Classification, Mol. Pharm., 1, 85 (2004); https://doi.org/10.1021/mp034006h
  76. T.T. Mariappan and S. Singh, Regional Gastrointestinal Permeability of Rifampicin and Isoniazid (Alone and their Combination) in the Rat, Int. J. Tuberc. Lung Dis., 7, 797 (2003).
  77. C. Becker, J.B. Dressman, G.L. Amidon, H.E. Junginger, S. Kopp, K.K. Midha, V.P. Shah, S. Stavchansky and D.M. Barends, Biowaiver Mono-graphs for Immediate Release Solid Oral Dosage Forms: Isoniazid, J. Pharm. Sci., 96, 522 (2007); https://doi.org/10.1002/jps.20765
  78. K.V. Rao, S. Kailasam, N.K. Menon and S. Radhakrishna, Inactivation of Isoniazid by Condensation in a Syrup Preparation, Bull. World Health Organ., 45, 625 (1971).
  79. M.Y. Lin, S.J. Lin, L.C. Chan and Y.C. Lu, Impact of Food and Antacids on the Pharmacokinetics of Anti-tuberculosis Drugs: Systematic Review and Meta-Analysis, Int. J. Tuberc. Lung Dis., 14, 806 (2010).
  80. M.R. Holdiness, Clinical Pharmacokinetics of the Antituberculosis Drugs, Clin. Pharmacokinet., 9, 511 (1984); https://doi.org/10.2165/00003088-198409060-00003
  81. A. Tostmann, M.J. Boeree, R.E. Aarnoutse, W.C. De Lange, A.J. Van Der Ven and R. Dekhuijzen, Antituberculosis Drug-Induced Hepatotoxicity: Concise Up-to-date Review, J. Gastroenterol. Hepatol., 23, 192 (2008); https://doi.org/10.1111/j.1440-1746.2007.05207.x
  82. P. Preziosi, Isoniazid: Metabolic Aspects and Toxicological Correlates, Curr. Drug Metab., 8, 839 (2007); https://doi.org/10.2174/138920007782798216
  83. S. Mahapatra, L.K. Woolhiser, A.J. Lenaerts, J.L. Johnson, K.D. Eisenach, M.L. Joloba, W.H. Boom and J.T. Belisle, A Novel Metabolite of Antituberculosis Therapy Demonstrates Host Activation of Isoniazid and Formation of the Isoniazid-NAD+ Adduct, Antimicrob. Agents Chemother., 56, 28 (2012); https://doi.org/10.1128/AAC.05486-11
  84. K. Fukino, Y. Sasaki, S. Hirai, T. Nakamura, M. Hashimoto, F. Yamagishi and K. Ueno, Effects of N-Acetyltransferase 2 (NAT2), CYP2E1 and Glutathione-S-transferase (GST) Genotypes on the Serum Concentrations of Isoniazid and Metabolites in Tuberculosis Patients, J. Toxicol. Sci., 33, 187 (2008); https://doi.org/10.2131/jts.33.187
  85. K.F. Windmill, A. Gaedigk, P. de la M. Hall, H. Samaratunga, D.M. Grant and M.E. McManus, Localization of N-Acetyltransferases NAT1 and NAT2 in Human Tissues, Toxicol. Sci., 54, 19 (2000); https://doi.org/10.1093/toxsci/54.1.19
  86. I.G. Metushi, P. Cai, X. Zhu, T. Nakagawa and J.P. Uetrecht, A Fresh Look at the Mechanism of Isoniazid-Induced Hepatotoxicity, Clin. Pharmacol. Ther., 89, 911 (2011); https://doi.org/10.1038/clpt.2010.355
  87. L. Scharer and J.P. Smith, Serum Transaminase Elevations and Other Hepatic Abnormalities in Patients Receiving Isoniazid, Ann. Intern. Med., 71, 1113 (1969); https://doi.org/10.7326/0003-4819-71-6-1113
  88. Y.S. Huang, Recent Progress in Genetic Variation and Risk of Antituberculosis Drug-Induced Liver Injury, J. Chin. Med. Assoc., 77, 169 (2014); https://doi.org/10.1016/j.jcma.2014.01.010
  89. R.A. Garibaldi, R.E. Drusin, S.H. Ferebee and M.B. Gregg, Isoniazid-Associated Hepatitis Report of an Outbreak, Am. Rev. Respir. Dis., 106, 357 (1972); https://doi.org/10.1164/arrd.1972.106.3.357
  90. S. Tafazoli, M. Mashregi and P.J. O’Brien, Role of Hydrazine in Isoniazid-induced Hepatotoxicity in a Hepatocyte Inflammation Model, Toxicol. Appl. Pharmacol., 229, 94 (2008); https://doi.org/10.1016/j.taap.2008.01.002
  91. G. Ramachandran and S. Swaminathan, Role of Pharmacogenomics in the Treatment of Tuberculosis: A Review, Pharmgenomics Pers. Med., 5, 89 (2012); https://doi.org/10.2147/PGPM.S15454
  92. C.M. Nolan, S.V. Goldberg and S.E. Buskin, Hepatotoxicity Associated With Isoniazid Preventive Therapy, A 7-Year Survey from a Public Health Tuberculosis Clinic, JAMA, 281, 1014 (1999); https://doi.org/10.1001/jama.281.11.1014
  93. P.R. Donald, Antituberculosis Drug-Induced Hepatotoxicity in Children, Pediatr. Rep., 3, e16 (2011); https://doi.org/10.4081/pr.2011.e16
  94. D.A. Perwitasari, J. Atthobari and B. Wilffert, Pharmacogenetics of Isoniazid-Induced Hepatotoxicity, Drug Metab. Rev., 47, 222 (2015); https://doi.org/10.3109/03602532.2014.984070
  95. A.N. Unissa, S. Subbian, L.E. Hanna and N. Selvakumar, Overview on Mechanisms of Isoniazid Action and Resistance in Mycobacterium tuberculosis, Genetics and evolution, 45, 474 (2016); https://doi.org/10.1016/j.meegid.2016.09.004
  96. A. Cattamanchi, R.B. Dantes, J.Z. Metcalfe, L.G. Jarlsberg, J. Grinsdale, L.M. Kawamura, D. Osmond, P.C. Hopewell and P. Nahid, Clinical Characteristics and Treatment Outcomes of Patients with Isoniazid-Monoresistant Tuberculosis, Clin. Infect. Dis., 48, 179 (2009); https://doi.org/10.1086/595689
  97. D. Menzies, A. Benedetti, A. Paydar, S. Royce, M. Pai, W. Burman, A. Vernon and C. Lienhardt, Standardized Treatment of Active Tuberculosis in Patients with Previous Treatment and/or with Mono-Resistance to Isoniazid: A Systematic Review and Meta-Analysis, PLoS Med., 6, e1000150 (2009); https://doi.org/10.1371/journal.pmed.1000150
  98. H.E. Jenkins, M. Zignol and T. Cohen, Quantifying the Burden and Trends of Isoniazid Resistant Tuberculosis, 1994–2009, PLoS One, 6, e22927 (2011); https://doi.org/10.1371/journal.pone.0022927
  99. G. Singh, H. Dwivedi, S.K. Saraf and S.A. Saraf, Niosomal Delivery of Isoniazid - Development and Characterization, Trop. J. Pharm. Res., 10, 203 (2011); https://doi.org/10.4314/tjpr.v10i2.66564
  100. C. Vilchèze and W.R. Jacobs Jr., Resistance to Isoniazid and Ethio-namide in Mycobacterium tuberculosis: Genes, Mutations and Causalities, Microbiol. Spectr., MGM2-0014-2013 (2014); https://doi.org/10.1128/microbiolspec.MGM2-0014-2013
  101. D.A. Rouse and S.L. Morris, Molecular Mechanisms of Isoniazid Resistance in Mycobacterium tuberculosis and Mycobacterium bovis, Infect. Immun., 63, 1427 (1995); https://doi.org/10.1128/iai.63.4.1427-1433.1995
  102. S. Siddiqi, P. Takhar, C. Baldeviano, W. Glover and Y. Zhang, Isoniazid Induces Its Own Resistance in Nonreplicating Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 51, 2100 (2007); https://doi.org/10.1128/AAC.00086-07
  103. R.S. Wallis, M. Palaci and K. Eisenach, Persistence, Not Resistance, Is the Cause of Loss of Isoniazid Effect, J. Infect. Dis., 195, 1870 (2007); https://doi.org/10.1086/518044
  104. H.M. Blumberg, W.J. Burman, R.E. Chaisson and C.L. Daley, Treatment of Tuberculosis, Am. J. Respir. Crit. Care Med., 167, 603 (2003); https://doi.org/10.1164/rccm.167.4.603