Main Article Content

Abstract

An investigation towards 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ)-catalyzed cross-dehydrogenative coupling (CDC) reactions of trans-3-phenylthio/benzylthioazetidin-2-ones (1a,b) and ethyl-2- phenylthioethanoates (5) with aliphatic/aromatic nucleophiles is described. A series of reaction conditions were chosen to obtain the monosubstituted and disubstituted β-lactams. However, CDC reactions of β-lactams with different aliphatic/aromatic substrates resulted into unidentified products whereas ethyl-2-phenylthioethanoates (5) underwent the CDC reaction to give the desired α-substituted ethyl- 2-phenylthioethanoates (7). Also, a plausible mechanism for the cross coupling of ethyl-2-phenylthioethanoates (5) with nucleophiles is described.

Keywords

Cross-dehydrogenative coupling C-H activation Copper catalyst Nucleophile Oxidation b-Lactams

Article Details

How to Cite
Narula, D., S. Bari, S., K. Banik, B., & Bhalla, A. (2017). An Investigation Towards 2,3-Dichloro- 5,6-dicyanobenzoquinone Catalyzed Cross- Dehydrogenative Coupling Reactions of Thio-β-lactams/Thioethanoates with Aliphatic/Aromatic Nucleophiles. Asian Journal of Organic & Medicinal Chemistry, 2(2), 58–62. https://doi.org/10.14233/ajomc.2017.AJOMC-P35

References

  1. S.A. Girard, T. Knauber and C.J. Li, Angew. Chem., Int. Ed., 53, 74 (2014); https://doi.org/10.1002/anie.201304268.
  2. L. Liu and P.E. Floreancig, Org. Lett.,12, 4686 (2010) and the references cited therein; https://doi.org/10.1021/ol102078v.
  3. R. Samanta, K.Matcha and A.P. Antonchick, Eur. J. Org. Chem., 5769 (2013) and the references cited therein; https://doi.org/10.1002/ejoc.201300286.
  4. B.P. Ying,B.G. Trogden, D.T. Kohlman, S.X. Liang, Y.C.Xu,Org. Lett.,6, 1523(2004); https://doi.org/10.1021/ol036314j.
  5. K. Alagiri, P. Devadig and K.R. Prabhu,Chem. Eur. J., 18, 5160 (2012); https://doi.org/10.1002/chem.201200100.
  6. W. Su, J. Yu, Z. Li and Z. Jiang, J. Org. Chem., 76, 9144 (2011); https://doi.org/10.1021/jo2015533.
  7. A.S.K. Tsang and M.H. Todd, Tetrahedron Lett., 50, 1199 (2009); https://doi.org/10.1016/j.tetlet.2008.12.101.
  8. A.S.K. Tsang, P. Jensen, J.M. Hook, A.S.K. Hashmi and M.H. Todd, Pure Appl. Chem., 83, 655 (2011); http://doi.org/10.1351/PAC-CON-11-01-01.
  9. D. Cheng and W. Bao, Adv. Synth. Catal., 350, 1263 (2008); https://doi.org/10.1002/adsc.200800085.
  10. K.N. Singh, P. Singh, P. Singh, Y. Maheshwary, S.V. Kessar and A. Batra, Synlett, 24, 1963 (2013) and references cited therein. https://doi.org/10.1055/s-0033-1339335.
  11. L. Fu, C.J. Yao, N.J. Chang, J.R. Chen, L.Q. Lu and W.J. Xiao, Org. Biomol. Chem.,10, 506 (2012); https://doi.org/10.1039/c1ob06890c.
  12. M. Salman, Z.Q. Zhu and Z.Z. Huang, Org. Lett., 18, 1526 (2016) and references cited therein; https://doi.org/10.1021/acs.orglett.6b00162.
  13. W. Li, C. Liu, H. Zhang, K. Ye, G. Zhang, W. Zhang, Z. Duan, S. You and A. Lei, Angew. Chem., Int. Ed., 53, 2443(2014); https://doi.org/10.1002/anie.201309081.
  14. A. Bhalla, S.S. Bari, S. Vats, J. Bhalla, K. Sharma and D. Narula, Tetrahedron Lett.57, 4763(2016) and references cited therein; http://doi.org/10.1016/j.tetlet.2016.09.043.
  15. A. Bhalla, P. Venugoplan and S.S. Bari, Tetrahedron, 62, 8291 (2006); https://doi.org/ 10.1016/j.tet.2006.06.062.
  16. S.S. Bari, A. Bhalla, P. Venugoplan and Q. Hundal, Res. J. Chem. Sci., 3, 1 (2013).