Main Article Content

Abstract

Synthetic investigations of monosubstituted and disubstituted β-lactams via C-3 functionalization of cis-3-methoxy-3-phenylthio-β-lactams are described. β-Lactam carbocation equivalents of type 1 on treatment with methanol and zinc chloride-silica rendered cis-3-methoxy-3phenylthio-β-lactams 2, which on further treatment with active aliphatic/ aromatic nucleophiles in the presence of a Lewis acid promote a facile and stereoselective C-3 substitution to provide monosubstituted β-lactams 3 and symmetrically disubstituted β-lactams 4, 5 and 6. The stereochemistry of monosubstituted product 3 was established by performing desulfurization with Raney-Ni, which led to the formation of cis-βlactam 7. The structural and stereochemical establishment of novel βlactams was made by using FT-IR, NMR (1H and 13C) and elemental analysis (CHNS). The cis or trans configuration of hydrogen/PhS/OMe/ nucleophile at C-3 was assigned with respect to C4-H

Keywords

Lewis acid Nucleophiles Monosubstituted Disubstituted Desulfurization b-Lactams

Article Details

How to Cite
Bhalla, A., Sharma, K., S. Bari, S., & K. Banik, B. (2017). Studies Towards C-3 Functionalization of cis-3-Methoxy-3-phenylthio-β-lactams. Asian Journal of Organic & Medicinal Chemistry, 2(3), 102–106. https://doi.org/10.14233/ajomc.2017.AJOMC-P39

References

  1. J.C. Sheehan and K.R.H. Logan, J. Am. Chem. Soc., 81, 5838 (1959); https://doi.org/10.1021/ja01530a079.
  2. D.J. Tipper and J.L. Strominger, Proc. Natl. Acad. Sci. USA, 54, 1133 (1965); https://doi.org/10.1073/pnas.54.4.1133.
  3. A. Bhalla, P. Venugopalan and S.S. Bari, Tetrahedron, 62, 8291 (2006); https://doi.org/10.1016/j.tet.2006.06.062.
  4. C. Palomo, A. Arrieta, F.P. Cossio, J.M. Aizpurua, A. Mielgo and N. Aurrekoetxea, Tetrahedron Lett., 31, 6429 (1990); https://doi.org/10.1016/S0040-4039(00)97083-7.
  5. D.M. Smith, A. Kazi, L. Smith, T.E. Long, B. Heldreth, E. Turos and Q.P. Dou, Mol. Pharmacol., 61, 1348 (2002); https://doi.org/10.1124/mol.61.6.1348.
  6. J.W. Skiles and D. McNeil, Tetrahedron Lett., 31, 7277 (1990); https://doi.org/10.1016/S0040-4039(00)88543-3.
  7. G.S. Singh, E. Mbukwa and T. Pheko, ARKIVOC, 80 (2007); https://doi.org/10.3998/ark.5550190.0008.910.
  8. (a) D.A. Burnett, M.A. Caplen, H.R. Davis, R.E. Burrier and J.W. Clader, J. Med. Chem., 37, 1733 (1994); https://doi.org/10.1021/jm00038a001. (b) S. Dugar, N. Yumibe, J.W. Clader, M. Vizziano, K. Huie, M. van Heek, D.S. Compton and H.R. Davis Jr., Bioorg. Med. Chem. Lett., 6, 1271 (1996); https://doi.org/10.1016/0960-894X(96)00214-4. (c) G.G. Wu, Org. Process Res. Dev., 4, 298 (2000); https://doi.org/10.1021/op990196r.
  9. A. Bhalla, S.S. Bari, S. Vats, J. Bhalla, K. Sharma and D. Narula, Tetrahedron Lett., 57, 4763 (2016); https://doi.org/10.1016/j.tetlet.2016.09.043.
  10. S.S. Bari, P. Venugopalan and R. Arora, Tetrahedron Lett., 44, 895 (2003); https://doi.org/10.1016/S0040-4039(02)02775-2.