Main Article Content

Abstract

A novel series of 3-methoxy/phthalimido-N,N-diethylphenylene diamine linked β-lactam derivatives have been synthesized via Staudinger cycloaddition reaction. Various imines (3a-c) were prepared quantitatively by refluxing aldehydes (1a-c) with easily procurable N,N-diethylphenylene diamine (2). These on reaction with 2-methoxy/phthalimido acetyl chloride in presence of the triethylamine provide corresponding cis- and trans-1-(4'-diethylamino)phenylazetidin-2-ones (4,5). These synthesized β-lactams (4,5) have been characterized by spectroscopic techniques viz. 1H NMR, IR and elemental analysis (CHN).

Keywords

trans- and cis-Azetidin2-ones Cycloaddition b-Lactams N,N-Diethylphenylene diamine

Article Details

How to Cite
S. Magtoof, M., Berry, S., S. Bari, S., K. Banik, B., & Bhalla, A. (2017). Facile Synthesis of Novel 3-Methoxy/ Phthalimido-N,N-diethylphenylene Diamine Substituted β-Lactams . Asian Journal of Organic & Medicinal Chemistry, 2(3), 97–101. https://doi.org/10.14233/ajomc.2017.AJOMC-P38

References

  1. A. Fleming, Br. J. Exp. Pathol., 10, 226 (1929).
  2. S.K. Srivastava, A. Nema and S.D. Srivastava, Indian J. Chem., 47B, 606 (2008); http://nopr.niscair.res.in/handle/123456789/1440.
  3. K.G. Desai and K.R. Desai, Indian J. Chem., 44B, 2093 (2005); http://nopr.niscair.res.in/handle/123456789/9209.
  4. M.C. Sharma, D.V. Kohli, N.K. Sahu, S. Sharma, S.C. Chaturvedi and S. Smitha, Dig. J. Nanomater. Biostruct., 4, 361 (2009).
  5. S.K. Srivastava, S. Srivastava and S.D. Srivastava, Indian J. Chem., 38B, 183 (1999); http://nopr.niscair.res.in/handle/123456789/16211.
  6. V.K. Pandey, V.D. Gupta, M. Upadhya, U. Mrudula, V.K. Singh and M. Tandon, Indian J. Chem., 44B, 158 (2005); http://nopr.niscair.res.in/handle/123456789/8927.
  7. (a) D. Niccolai, L. Trasi and R.J. Thomas, Chem. Commun., 2333, (1997); https://doi.org/10.1039/A704497F. (b) D.T.W. Chu, J.J. Plattner and L. Katz, J. Med. Chem., 39, 3853 (1996); https://doi.org/10.1021/jm960294s.
  8. D.M. Smith, A. Kazi, L. Smith, T.E. Long, B. Heldreth, E. Turos and Q.P. Dou, Mol. Pharmacol., 61, 1348 (2002); https://doi.org/10.1124/mol.61.6.1348.
  9. A. Kolbus, D. Grabka, A. Danel and K. Szary, Opt. Mater., 57, 102 (2016); https://doi.org/10.1016/j.optmat.2016.04.010.
  10. Q. Gao, J. Hanh, L. Váradi, R. Cairns, H. Sjöström, V.W.Y. Liao, P. Wood, S. Balaban, J.A. Ong, H.-Yu.J. Lin, F. Lai, A.J. Hoy, T. Grewal, P.W. Groundwater and D.E. Hibbs, Bioorg. Med. Chem., 23, 7676 (2015); https://doi.org/10.1016/j.bmc.2015.11.013.
  11. L. Valgimigli, G.F. Pedulli, S. Cabiddu, E. Sanjust and A. Rescigno, Tetrahedron, 56, 659 (2000); https://doi.org/10.1016/S0040-4020(99)01036-4.
  12. C. Ibis, A.H. Shntaif, H. Bahar and S.S. Ayla, J. Serb. Chem. Soc., 80, 731 (2015); https://doi.org/10.2298/JSC141124021I.
  13. A.J. Abdulghani and R.K. Hussain, Open J. Inorg. Chem., 5, 83 (2015); https://doi.org/10.4236/ojic.2015.54010.
  14. A. Bhalla, S.S. Bari, S. Vats, J. Bhalla, K. Sharma and D. Narula, Tetrahedron Lett., 57, 4763 (2016); https://doi.org/10.1016/j.tetlet.2016.09.043.
  15. M.S. Magtoof, Z.S. Hassan and K.M. Hello, Org. Chem. Indian J., 7, 219 (2011).