Main Article Content

Abstract

The regioselective epoxide ring opening at less substituted carbon atom of epoxide were reported by nucleophiles like heterocyclic amines which gives well known 1,2-difunctionalized amino alcohols. These are present in many synthetic as well as natural products. The ring opening of epoxide is achieved by cleavage with amines in presence of copper(0) as a catalyst. It is observed that the lithium napthalenide reduction of copper(I) produces a highly reactive form of copper(0) that acts as a catalyst for ring opening of epoxides with an amine.

Keywords

Lithium Napthalenide Copper(0) Amino alcohol Biological activity Activity spectra

Article Details

How to Cite
S. Devkate, S., S. Burungale, A., S. Pise, A., & D. Jadhav, S. (2019). Active Copper Catalyzed Regioselective Ring Opening of Epoxides by Heterocyclic Amines: An Efficient Protocol for Synthesis of β-Amino Alcohols. Asian Journal of Organic & Medicinal Chemistry, 4(3), 194–199. https://doi.org/10.14233/ajomc.2019.AJOMC-P213

References

  1. D.J. Ager, I. Prakash and D. Schad, 1,2-Amino Alcohols and Their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis, Chem. Rev., 96, 835 (1996); https://doi.org/10.1021/cr9500038.
  2. L.S. Goodman and A. Gilman, The Pharmacological Basic of Therapeutics, Macmillan: New York, edn 6, p. 16 (1980).
  3. G.A. Rogers, S.M. Parson, D.C. Anderson, L.M. Nilsson, B.A. Bhar, W.D. Kornereich, R. Kaufman, R.S. Jacobs and B. Kirtman, Synthesis, in vitro Acetylcholine-Storage-Blocking Activities, and Biological Properties of Derivatives and Analogs of trans-2-(4-Phenylpiperidino)-cyclohexanol (Vesamicol), J. Med. Chem., 32, 1217 (1989); https://doi.org/10.1021/jm00126a013.
  4. C. Auvin-Guette, S. Rebuffat, Y. Pregent and B. Bodo, Trichogin A IV, an 11-Residue Lipopeptaibol from Trichoderma longibrachiatum, J. Am. Chem. Soc., 114, 2170 (1992); https://doi.org/10.1021/ja00032a035.
  5. S. Wu, R. Takeya, M. Eto and C. Tomizawa, Insecticidal Activity of Optical Isomers of 1,3,2-Oxaazaphospholidine-2-sulfides and 1,3,2-Benzodioxaphospholine-2-sulfides, J. Pestic. Sci., 12, 221 (1987); https://doi.org/10.1584/jpestics.12.221.
  6. E.J. Corey, R.K. Bakshi, S. Shibata, C.P. Chen and V.K. Singh, A Stable and Easily Prepared Catalyst for the Enantioselective Reduction of Ketones. Applications to Multistep Syntheses, J. Am. Chem. Soc., 109, 7925 (1987); https://doi.org/10.1021/ja00259a075.
  7. J.A. Deyrup and C.L. Moyer, 1,2,3-Oxathiazolidines. Heterocyclic System, J. Org. Chem., 34, 175 (1969); https://doi.org/10.1021/jo00838a038.
  8. G.H. Posner and D.Z. Rogers, Organic Reactions at Alumina Surfaces. Mild and Selective Opening of Arene and Related Oxides by Weak Oxygen and Nitrogen Nucleophiles, J. Am. Chem. Soc., 99, 8214 (1997); https://doi.org/10.1021/ja00467a015.
  9. Y. Yamamoto, N. Asao, M. Meguro, N. Tsukade, H. Nemato, N. Adayari, J.G. Wilson and H. Nakamura, Regio- and Stereo-Selective Ring Opening of Epoxides with Amide Cuprate Reagents, Chem. Commun., 15, 1201 (1993); https://doi.org/10.1039/c39930001201.
  10. L.E. Overman and L.A. Flippin, Facile Aminolysis of Epoxides with Diethylaluminum Amides, Tetrahedron Lett., 22, 195 (1981); https://doi.org/10.1016/0040-4039(81)80053-6.
  11. J.I. Yamada, M. Yumoto and Y. Yamamoto, Aminolead Compounds as a New Reagent for Regioselective Ring Opening of Epoxides, Tetrahedron Lett., 30, 4255 (1989); https://doi.org/10.1016/S0040-4039(01)80704-8.
  12. S. Sagava, H. Abe, Y. Hase and T. Inaba, Catalytic Asymmetric Amino-lysis of 3,5,8-Trioxabicyclo[5.1.0]octane Providing an Optically Pure 2-Amino-1,3,4-butanetriol Equivalent, J. Org. Chem., 64, 4962 (1999); https://doi.org/10.1021/jo9900883.
  13. G. Sekar and V.K. Singh, An Efficient Method for Cleavage of Epoxides with Aromatic Amines, J. Org. Chem., 64, 287 (1999); https://doi.org/10.1021/jo981196c.
  14. J. Auge and F. Leroy, Lithium Trifluoromethanesulfonate-Catalyzed Aminolysis of Oxiranes, Tetrahedron Lett., 37, 7715 (1996); https://doi.org/10.1016/0040-4039(96)01731-5.
  15. M. Chini, P. Crotti, L. Favero, F. Machhia and M. Pineschi, Lanthanide(III) Trifluoromethanesulfonates as Extraordinarily Effective New Catalysts for the Aminolysis of 1,2-Epoxides, Tetrahedron Lett., 35, 433 (1994); https://doi.org/10.1016/0040-4039(94)85073-9.
  16. S. Chandrasekhar, T. Ramchander and P.S. Jaya, TaCl5-Catalyzed Cleavage of Epoxides with Aromatic Amines, Synthesis, 1817 (2000); https://doi.org/10.1055/s-2000-8240.
  17. J. Iqbal and A. Pandey, An Unusual Chemoselectivity in Cobalt(II) Chloride Catalyzed Cleavage of Oxiranes with Anilines: A Highly Regioselective Synthesis Of b-Amino Alcohols, Tetrahedron Lett., 31, 575 (1990); https://doi.org/10.1016/0040-4039(90)87039-3.
  18. M. Chini, P. Crotti and F. Macchia, Metal Salts as New Catalysts for Mild and Efficient Aminolysis of Oxiranes, Tetrahedron Lett., 31, 4661 (1990); https://doi.org/10.1016/S0040-4039(00)97701-3.
  19. L.R. Reddy, M.A. Reddy, N. Bhanumathi and K.R. Rao, Cerium Chloride-Catalysed Cleavage of Epoxides with Aromatic Amines, Synthesis, 831 (2001); https://doi.org/10.1055/s-2001-13414.
  20. X.L. Fu and S.H. Wu, A Regio-and Stereoselective Synthesis of b-Amino Alcohols, Synth. Commun., 27, 1677 (1997); https://doi.org/10.1080/00397919708004077.
  21. P. Van de Weghe and J. Collin, Ring Opening Reactions of Epoxides Catalyzed by Samarium Iodides, Tetrahedron Lett., 36, 1649 (1995); https://doi.org/10.1016/0040-4039(95)00086-R.
  22. H. Kotsuki, K. Hayashida, T. Shimanouchi and H. Nishizawa, High-Pressure Organic Chemistry. 19. High-Pressure-Promoted, Silica Gel-Catalyzed Reaction of Epoxides with Nitrogen Heterocycles, J. Org. Chem., 61, 984 (1996); https://doi.org/10.1021/jo951106t.
  23. K.C. Nicolaou and C.N. Boddy, Atropselective Macrocyclization of Diaryl Ether Ring Systems: Application to the Synthesis of Vancomycin Model Systems, J. Am. Chem. Soc., 124, 10451 (2002); https://doi.org/10.1021/ja020736r.
  24. J.P. Michael, Indolizidine and Quinolizidine Alkaloids, Natural Prod. Rep., 16, 675 (1999); https://doi.org/10.1039/a809404g.
  25. D.J. Ager, I. Prakash and D.R. Schaad, 1,2-Amino Alcohols and their Heterocyclic Derivatives as Chiral Auxiliaries in Asymmetric Synthesis, Chem. Rev., 96, 835 (1996); https://doi.org/10.1021/cr9500038.
  26. D.E. Frantz, R. Fässler and E.M. Carreira, Facile Enantioselective Synthesis of Propargylic Alcohols by Direct Addition of Terminal Alkynes to Aldehydes, J. Am. Chem. Soc., 122, 1806 (2000); https://doi.org/10.1021/ja993838z.
  27. J. Liebscher, S. Jin, A. Otto and K. Woydowski, Synthetic Application of Chiral Pool Derived Heterocycles, J. Heterocycl. Chem., 37, 509 (2000); https://doi.org/10.1002/jhet.5570370308.
  28. E.J. Corey and F. Zhang, Mechanism and Conditions for Highly Enantioselective Epoxidation of a,b-Enones Using Charge-Accelerated Catalysis by a Rigid Quaternary Ammonium Salt, Org. Lett., 1, 1287 (1999); https://doi.org/10.1021/ol990964z.
  29. V.T. Kamble and N.S. Joshi, Synthesis of a-Amino Alcohols by Ring Opening of Epoxides with Amines Catalyzed by Cyanuric Chloride under Mild and Solvent-Free Conditions, Green Chem. Lett. Rev., 3-4, 275 (2010); https://doi.org/10.1080/17518251003776885.
  30. M.E. Connolly, F. Kersting and T. Dollery, The Clinical Pharmacology of Betaadrenergic Blocking Agents, Prog. Cardiovasc Dis., 19, 203 (1976).
  31. J.P. Michael, Indolizidine and Quinolizidine Alkaloids, Nat. Prod. Rep., 18, 520 (2001); https://doi.org/10.1039/b005384h.
  32. A.K. Kinage, P.P. Upare, A.B. Shivarkar and S.P. Gupte, Highly Regio-Selective Synthesis of b-Amino Alcohol by Reaction with Aniline and Propylene Carbonate in Self Solvent System over Large Pore Zeolite Catalyst, Green Sustain. Chem., 1, 76 (2011); https://doi.org/10.4236/gsc.2011.13013.
  33. S.B. Pujala and A.K. Chakraborti, Zinc(II) Perchlorate Hexahydrate Catalyzed Opening of Epoxide Ring by Amines: Applications to Synthesis of (RS)/(R)-Propranolols and (RS)/(R)/(S)-Naftopidils, J. Org. Chem., 72, 3713 (2007); https://doi.org/10.1021/jo062674j.
  34. N. Azizi and M.R. Saidi, Highly Chemoselective Addition of Amines to Epoxides in Water, Org. Lett., 7, 3649 (2005); https://doi.org/10.1021/ol051220q.
  35. J.R. Lizza and G. Moura-Letts, Solvent-Directed Epoxide Opening with Primary Amines for the Synthesis of b-Amino Alcohols, Synthesis, 49, 1231 (2017); https://doi.org/10.1055/s-0036-1588356.
  36. S. Azoulay, K. Manabe and S. Kobayashi, Catalytic Asymmetric Ring Opening of meso-Epoxides with Aromatic Amines in Water, Org. Lett., 7, 4593 (2005); https://doi.org/10.1021/ol051546z.
  37. D.R. Gehlert, D.J. Goldstein and P.A. Hipskind, Treating Obesity in the 21st Century, Annu. Rep. Med. Chem., 201 (1999).
  38. P. O’Brien, Sharpless Asymmetric Aminohydroxylation: Scope, Limitations, and Use in Synthesis, Angew Chem Int. Ed., 38, 326 (1999); https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3<326::AID-ANIE326>3.0.CO;2-T.
  39. S. Yamada, T. Ohukara, S. Uchida, K. Inabe, Y. Iwatani, R. Kimura, T. Hoshino and T. Kaburagi, A Sustained Increase in b-Adrenoceptors During Long-Term Therapy with Metoprolol and Bisoprolol in Patients with Heart Failure from Idiopathic Dilated Cardiomyopathy, Life Sci., 58, 1737 (1996); https://doi.org/10.1016/0024-3205(96)00155-5.
  40. D.M. Hodgson, A.R. Gibbs and G.P. Lee, Enantioselective Desymmetri-sation of Achiral Epoxides, Tetrahedron, 52, 14361 (1996); https://doi.org/10.1016/0040-4020(96)00888-5.
  41. R.D. Rieke and L.D. Rhyne, Preparation of Highly Reactive Metal Powders. Activated Copper and Uranium. The Ullmann Coupling and Preparation of Organometallic Species, J. Org. Chem., 49, 3445 (1984); https://doi.org/10.1021/jo01333a050.