Main Article Content
Abstract
The β-amino compounds were synthesized from α,β-unsaturated esters, nitriles and amine using water as a solvent in the presence of 10 mol % Cu(I) catalyst in high yields within 2-5 min under ultrasound irradiation at room temperature. The reaction rate was enhanced tremendously under ultrasound irradiation as compared to conventional methods with improved yields have been recorded.
Keywords
Article Details
Copyright (c) 2020 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- F. Texier-Boullet, R. Latouche and J. Hamelin, Synthesis in Dry Media Coupled with Microwave Irradiation: Application to the Preparation of b-Aminoesters and b-Lactams via Silyl Ketene Acetals and Aldimines, Tetrahedron Lett., 34, 2123 (1993); https://doi.org/10.1016/S0040-4039(00)60361-1
- S.D. Bull, S.G. Davies, S. Belgado-Ballester, G. Fenton, P.M. Kelly and A.D. Smith, The Asymmetric Synthesis of b-Haloaryl-b-Amino Acid Derivatives, Synlett, 1257 (2000); https://doi.org/10.1055/s-2000-7146
- D. Rosenthal, G. Brandrup, K.H. Davis Jr. and M.E. Wall, The Synthesis of ß-Amino Mercaptans and b-Amino Thiosulfates via Ethylenimine Intermediates, J. Org. Chem., 30, 3689 (1965); https://doi.org/10.1021/jo01022a023
- M. Kawatsura and J.F. Hartwig, Transition Metal-Catalyzed Addition of Amines to Acrylic Acid Derivatives. A High-Throughput Method for Evaluating Hydroamination of Primary and Secondary Alkylamines, Organometallics, 20, 1960 (2001); https://doi.org/10.1021/om0009987
- T.P. Loh and L.L. Wei, Indium Trichloride-Catalyzed Conjugate Addition of Amines to a,b-Ethylenic Compounds in Water, Synlett, 975 (1998); https://doi.org/10.1055/s-1998-1845
- G. Bartoli, M. Bartolacci, A. Giuliani, E. Marcantoni, M. Massaccesi and E. Torregiani, Improved Heteroatom Nucleophilic Addition to Electron-Poor Alkenes Promoted by CeCl3·7H2O/NaI System Supported on Alumina in Solvent-Free Conditions, J. Org. Chem., 70, 169 (2005); https://doi.org/10.1021/jo048329g
- G. Jenner, Catalytic High Pressure Synthesis of Hindered b-Aminoesters, Tetrahedron Lett., 36, 233 (1995); https://doi.org/10.1016/0040-4039(94)02215-W
- N. Srivastava and B.K. Banik, Bismuth Nitrate-Catalyzed Versatile Michael Reactions, J. Org. Chem., 68, 2109 (2003); https://doi.org/10.1021/jo026550s
- R. Varala, M.M. Alam and S.R. Adapa, Chemoselective Michael Type Addition of Aliphatic Amines to a,b-Ethylenic Compounds Using Bismuth Triflate Catalyst, Synlett, 720 (2003); https://doi.org/10.1055/s-2003-38345
- T.C. Wabnitz and J.B. Spencer, Convenient Synthesis of Cbz-Protected b-Amino Ketones by a Copper-Catalyzed Conjugate Addition Reaction, Tetrahedron Lett., 43, 3891 (2002); https://doi.org/10.1016/S0040-4039(02)00654-8
- L.W. Xu, J.W. Li, C.G. Xia, S.L. Zhou and X.X. Hu, Efficient Copper-Catalyzed Chemo Selective Conjugate Addition of Aliphatic Amines to a,b-Unsaturated Compounds in Water, Synlett, 2425 (2003); https://doi.org/10.1055/s-2003-42125
- N. Azizi and M.R. Saidi, LiClO4 Accelerated Michael Addition of Amines to a,b-Unsaturated Olefins Under Solvent-free Conditions, Tetrahedron Lett., 60, 383 (2004); https://doi.org/10.1016/j.tet.2003.11.012
- N.S. Shaikh, V.H. Deshpande and A.V. Bedekar, Clay Catalyzed Chemoselective Michael Type Addition of Aliphatic Amines to a,b-Ethylenic Compounds, Tetrahedron Lett., 57, 9045 (2001); https://doi.org/10.1016/S0040-4020(01)00911-5
- B. Basu, P. Das and I. Hossain, Synthesis of b-Amino Esters via Aza-Michael Addition of Amines to Alkenes Promoted on Silica: A Useful and Recyclable Surface, Synlett, 2630 (2004); https://doi.org/10.1055/s-2004-834836
- J. Cabral, P. Laszlo, L. Mahe, M.-T. Montaufier and S.L. Randriamahefa, Catalysis of the Specific Michael Addition : The Example of Acrylate Acceptors, Tetrahedron Lett., 30, 3969 (1989); https://doi.org/10.1016/S0040-4039(00)99297-9
- L. Yang, L.W. Xu and C.G. Xia, Highly efficient KF/Al2O3-Catalyzed Versatile Hetero-Michael Addition of Nitrogen, Oxygen and Sulfur Nucleophiles to a,b-Ethylenic Compounds, Tetrahedron Lett., 46, 3279 (2005); https://doi.org/10.1016/j.tetlet.2005.03.112
- K. Damera, K.L. Reddy and G.V.M. Sharma, An Efficient ZrCl4 Catalyzed Aza-Michael Addition Reaction: Synthesis of C-Linked Carbo b3-Amino Acids, Lett. Org. Chem., 6, 151 (2009); https://doi.org/10.2174/157017809787582834
- D. Perdicchia and K.A. Jørgensen, Asymmetric Aza-Michael Reactions Catalyzed by Cinchona Alkaloids, J. Org. Chem., 72, 3565 (2007); https://doi.org/10.1021/jo0626717
- K. De, J. Legros, B. Crousse and D. Bonnet-Delpon, Solvent-Promoted and -Controlled Aza-Michael Reaction with Aromatic Amines, J. Org. Chem., 74, 6260 (2009); https://doi.org/10.1021/jo9012699
- C. Mukherjee and A.K. Misra, Aza-Michael Addition of Amines to Activated Alkenes Catalyzed by Silica Supported Perchloric Acid Under a Solvent-Free Condition, Lett. Org. Chem., 4, 54 (2007); https://doi.org/10.2174/157017807780037414
- A.V. Narsaiah, Lanthanum Trichloride (LaCl3): An Efficient Catalyst for Conjugate Addition of Amines to Electron-Deficient Olefins, Lett. Org. Chem., 4, 462 (2007); https://doi.org/10.2174/157017807782006290
- A.K. Verma, P. Attri, V. Chopra, R.K. Tiwari and R. Chandra, Triethyl-ammonium acetate (TEAA): A Recyclable Inexpensive Ionic Liquid Promotes the Chemoselective Aza- and Thia-michael Reactions, Montash. Chem, 139, 1041 (2008); https://doi.org/10.1007/s00706-008-0886-4
- X. Ai, X. Wang, J.M. Liu, Z.M. Ge, T.M. Cheng and T.T. Li, An Effective Aza-Michael Addition of Aromatic Amines to Electron-deficient Alkenes in Alkaline Al2O3, Tetrahedron, 66, 5373 (2010); https://doi.org/10.1016/j.tet.2010.05.054
- V. Polshettiwar and R.S. Varma, Tandem bis-Aza-Michael Addition Reaction of Amines in Aqueous Medium Promoted by Polystyrene-sulfonic Acid, Tetrahedron Lett., 48, 8735 (2007); https://doi.org/10.1016/j.tetlet.2007.10.008
- A.P. Esteves, M.E. Silva, L.M. Rodrigues, A.M.F. Oliveira-Campos and R. Hrdina, Aza-Michael Reactions with Vinyl Sulfones and Amberlyst-15 as Catalyst, Tetrahedron Lett., 48, 9040 (2007); https://doi.org/10.1016/j.tetlet.2007.10.077
- S. Azad, T. Kobayashi, K. Nakano, Y. Ichikawa and H. Kotsuki, Efficient Brønsted Acid-Catalyzed Aza-Michael Reaction of Amides and Ureas with a,b-Unsaturated Enones under High-Pressure Conditions, Tetrahedron Lett., 50, 48 (2009); https://doi.org/10.1016/j.tetlet.2008.10.082
- A.G. Ying, L. Liu, G.F. Wu, G. Chen, X.Z. Chen and W.D. Ye, Aza-Michael Addition of Aliphatic or Aromatic Amines to a,b-Unsaturated Compounds Catalyzed by a DBU-Derived Ionic Liquid Under Solvent-Free Conditions, Tetrahedron Lett., 50, 1653 (2009); https://doi.org/10.1016/j.tetlet.2009.01.123
- J. Lv, H. Wu and Y. Wang, Eur. J. Org. Chem., 2010, 2073 (2010); https://doi.org/10.1002/ejoc.200901227
- K.P. Dhake, P.J. Tambade, R.S. Singhal and B.M. Bhanage, Promiscuous Candida antarctica Lipase b-Catalyzed Synthesis of b-Amino Esters via Aza-Michael Addition of Amines to Acrylates, Tetrahedron Lett., 51, 4455 (2010); https://doi.org/10.1016/j.tetlet.2010.06.089
- G. Imanzadeh, F. Ahmadi, M. Zamanloo and Y. Mansoori, Tetrabutyl-ammonium Bromide Media Aza-Michael Addition of 1,2,3,6-Tetra-hydrophthalimide to Symmetrical Fumaric Esters and Acrylic Esters under Solvent-Free Conditions, Molecules, 15, 7353 (2010); https://doi.org/10.3390/molecules15107353
- C.A.M.A. Hug and A.R. Naresh Raj, Tandem Grignard Addition/Aromatic Aza-Cope Rearrangement Route to the Synthesis of 3,4-dihydropyrrolo[2,1-a]isoquinoline Derivatives, Indian J. Chem., 52B, 1451 (2013).
- S. Kotha and R. Ali, Two Directional Approach to Spirocyclic Ethers via Grignard Reaction and via Ring-closing Metathesis, Indian J. Chem., 55B, 1099 (2016).
- E. Korkusuz and I. Yildirim, Reactivity of Some Pyrazole-3-carboxylic Acid Derivatives towards Grignard Reagent, Indian J. Chem., 56B, 152 (2017).
- D. Bandyopadhyay, S. Mukherjee, L.C. Turrubiartes and B.K. Banik, Ultrasound-Assisted Aza-Michael Reaction in Water: A Green Procedure, Ultrason. Sonochem., 19, 969 (2012); https://doi.org/10.1016/j.ultsonch.2011.11.009
- M.K. Chaudhuri, S. Hussain, M.L. Kantam and B. Neelima, Boric acid: A Novel and Safe Catalyst for Aza-Michael Reactions in Water, Tetrahedron Lett., 46, 8329 (2005); https://doi.org/10.1016/j.tetlet.2005.09.167
- S. Kobayashi and K. Manabe, Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media, Acc. Chem. Res., 35, 209 (2002); https://doi.org/10.1021/ar000145a
References
F. Texier-Boullet, R. Latouche and J. Hamelin, Synthesis in Dry Media Coupled with Microwave Irradiation: Application to the Preparation of b-Aminoesters and b-Lactams via Silyl Ketene Acetals and Aldimines, Tetrahedron Lett., 34, 2123 (1993); https://doi.org/10.1016/S0040-4039(00)60361-1
S.D. Bull, S.G. Davies, S. Belgado-Ballester, G. Fenton, P.M. Kelly and A.D. Smith, The Asymmetric Synthesis of b-Haloaryl-b-Amino Acid Derivatives, Synlett, 1257 (2000); https://doi.org/10.1055/s-2000-7146
D. Rosenthal, G. Brandrup, K.H. Davis Jr. and M.E. Wall, The Synthesis of ß-Amino Mercaptans and b-Amino Thiosulfates via Ethylenimine Intermediates, J. Org. Chem., 30, 3689 (1965); https://doi.org/10.1021/jo01022a023
M. Kawatsura and J.F. Hartwig, Transition Metal-Catalyzed Addition of Amines to Acrylic Acid Derivatives. A High-Throughput Method for Evaluating Hydroamination of Primary and Secondary Alkylamines, Organometallics, 20, 1960 (2001); https://doi.org/10.1021/om0009987
T.P. Loh and L.L. Wei, Indium Trichloride-Catalyzed Conjugate Addition of Amines to a,b-Ethylenic Compounds in Water, Synlett, 975 (1998); https://doi.org/10.1055/s-1998-1845
G. Bartoli, M. Bartolacci, A. Giuliani, E. Marcantoni, M. Massaccesi and E. Torregiani, Improved Heteroatom Nucleophilic Addition to Electron-Poor Alkenes Promoted by CeCl3·7H2O/NaI System Supported on Alumina in Solvent-Free Conditions, J. Org. Chem., 70, 169 (2005); https://doi.org/10.1021/jo048329g
G. Jenner, Catalytic High Pressure Synthesis of Hindered b-Aminoesters, Tetrahedron Lett., 36, 233 (1995); https://doi.org/10.1016/0040-4039(94)02215-W
N. Srivastava and B.K. Banik, Bismuth Nitrate-Catalyzed Versatile Michael Reactions, J. Org. Chem., 68, 2109 (2003); https://doi.org/10.1021/jo026550s
R. Varala, M.M. Alam and S.R. Adapa, Chemoselective Michael Type Addition of Aliphatic Amines to a,b-Ethylenic Compounds Using Bismuth Triflate Catalyst, Synlett, 720 (2003); https://doi.org/10.1055/s-2003-38345
T.C. Wabnitz and J.B. Spencer, Convenient Synthesis of Cbz-Protected b-Amino Ketones by a Copper-Catalyzed Conjugate Addition Reaction, Tetrahedron Lett., 43, 3891 (2002); https://doi.org/10.1016/S0040-4039(02)00654-8
L.W. Xu, J.W. Li, C.G. Xia, S.L. Zhou and X.X. Hu, Efficient Copper-Catalyzed Chemo Selective Conjugate Addition of Aliphatic Amines to a,b-Unsaturated Compounds in Water, Synlett, 2425 (2003); https://doi.org/10.1055/s-2003-42125
N. Azizi and M.R. Saidi, LiClO4 Accelerated Michael Addition of Amines to a,b-Unsaturated Olefins Under Solvent-free Conditions, Tetrahedron Lett., 60, 383 (2004); https://doi.org/10.1016/j.tet.2003.11.012
N.S. Shaikh, V.H. Deshpande and A.V. Bedekar, Clay Catalyzed Chemoselective Michael Type Addition of Aliphatic Amines to a,b-Ethylenic Compounds, Tetrahedron Lett., 57, 9045 (2001); https://doi.org/10.1016/S0040-4020(01)00911-5
B. Basu, P. Das and I. Hossain, Synthesis of b-Amino Esters via Aza-Michael Addition of Amines to Alkenes Promoted on Silica: A Useful and Recyclable Surface, Synlett, 2630 (2004); https://doi.org/10.1055/s-2004-834836
J. Cabral, P. Laszlo, L. Mahe, M.-T. Montaufier and S.L. Randriamahefa, Catalysis of the Specific Michael Addition : The Example of Acrylate Acceptors, Tetrahedron Lett., 30, 3969 (1989); https://doi.org/10.1016/S0040-4039(00)99297-9
L. Yang, L.W. Xu and C.G. Xia, Highly efficient KF/Al2O3-Catalyzed Versatile Hetero-Michael Addition of Nitrogen, Oxygen and Sulfur Nucleophiles to a,b-Ethylenic Compounds, Tetrahedron Lett., 46, 3279 (2005); https://doi.org/10.1016/j.tetlet.2005.03.112
K. Damera, K.L. Reddy and G.V.M. Sharma, An Efficient ZrCl4 Catalyzed Aza-Michael Addition Reaction: Synthesis of C-Linked Carbo b3-Amino Acids, Lett. Org. Chem., 6, 151 (2009); https://doi.org/10.2174/157017809787582834
D. Perdicchia and K.A. Jørgensen, Asymmetric Aza-Michael Reactions Catalyzed by Cinchona Alkaloids, J. Org. Chem., 72, 3565 (2007); https://doi.org/10.1021/jo0626717
K. De, J. Legros, B. Crousse and D. Bonnet-Delpon, Solvent-Promoted and -Controlled Aza-Michael Reaction with Aromatic Amines, J. Org. Chem., 74, 6260 (2009); https://doi.org/10.1021/jo9012699
C. Mukherjee and A.K. Misra, Aza-Michael Addition of Amines to Activated Alkenes Catalyzed by Silica Supported Perchloric Acid Under a Solvent-Free Condition, Lett. Org. Chem., 4, 54 (2007); https://doi.org/10.2174/157017807780037414
A.V. Narsaiah, Lanthanum Trichloride (LaCl3): An Efficient Catalyst for Conjugate Addition of Amines to Electron-Deficient Olefins, Lett. Org. Chem., 4, 462 (2007); https://doi.org/10.2174/157017807782006290
A.K. Verma, P. Attri, V. Chopra, R.K. Tiwari and R. Chandra, Triethyl-ammonium acetate (TEAA): A Recyclable Inexpensive Ionic Liquid Promotes the Chemoselective Aza- and Thia-michael Reactions, Montash. Chem, 139, 1041 (2008); https://doi.org/10.1007/s00706-008-0886-4
X. Ai, X. Wang, J.M. Liu, Z.M. Ge, T.M. Cheng and T.T. Li, An Effective Aza-Michael Addition of Aromatic Amines to Electron-deficient Alkenes in Alkaline Al2O3, Tetrahedron, 66, 5373 (2010); https://doi.org/10.1016/j.tet.2010.05.054
V. Polshettiwar and R.S. Varma, Tandem bis-Aza-Michael Addition Reaction of Amines in Aqueous Medium Promoted by Polystyrene-sulfonic Acid, Tetrahedron Lett., 48, 8735 (2007); https://doi.org/10.1016/j.tetlet.2007.10.008
A.P. Esteves, M.E. Silva, L.M. Rodrigues, A.M.F. Oliveira-Campos and R. Hrdina, Aza-Michael Reactions with Vinyl Sulfones and Amberlyst-15 as Catalyst, Tetrahedron Lett., 48, 9040 (2007); https://doi.org/10.1016/j.tetlet.2007.10.077
S. Azad, T. Kobayashi, K. Nakano, Y. Ichikawa and H. Kotsuki, Efficient Brønsted Acid-Catalyzed Aza-Michael Reaction of Amides and Ureas with a,b-Unsaturated Enones under High-Pressure Conditions, Tetrahedron Lett., 50, 48 (2009); https://doi.org/10.1016/j.tetlet.2008.10.082
A.G. Ying, L. Liu, G.F. Wu, G. Chen, X.Z. Chen and W.D. Ye, Aza-Michael Addition of Aliphatic or Aromatic Amines to a,b-Unsaturated Compounds Catalyzed by a DBU-Derived Ionic Liquid Under Solvent-Free Conditions, Tetrahedron Lett., 50, 1653 (2009); https://doi.org/10.1016/j.tetlet.2009.01.123
J. Lv, H. Wu and Y. Wang, Eur. J. Org. Chem., 2010, 2073 (2010); https://doi.org/10.1002/ejoc.200901227
K.P. Dhake, P.J. Tambade, R.S. Singhal and B.M. Bhanage, Promiscuous Candida antarctica Lipase b-Catalyzed Synthesis of b-Amino Esters via Aza-Michael Addition of Amines to Acrylates, Tetrahedron Lett., 51, 4455 (2010); https://doi.org/10.1016/j.tetlet.2010.06.089
G. Imanzadeh, F. Ahmadi, M. Zamanloo and Y. Mansoori, Tetrabutyl-ammonium Bromide Media Aza-Michael Addition of 1,2,3,6-Tetra-hydrophthalimide to Symmetrical Fumaric Esters and Acrylic Esters under Solvent-Free Conditions, Molecules, 15, 7353 (2010); https://doi.org/10.3390/molecules15107353
C.A.M.A. Hug and A.R. Naresh Raj, Tandem Grignard Addition/Aromatic Aza-Cope Rearrangement Route to the Synthesis of 3,4-dihydropyrrolo[2,1-a]isoquinoline Derivatives, Indian J. Chem., 52B, 1451 (2013).
S. Kotha and R. Ali, Two Directional Approach to Spirocyclic Ethers via Grignard Reaction and via Ring-closing Metathesis, Indian J. Chem., 55B, 1099 (2016).
E. Korkusuz and I. Yildirim, Reactivity of Some Pyrazole-3-carboxylic Acid Derivatives towards Grignard Reagent, Indian J. Chem., 56B, 152 (2017).
D. Bandyopadhyay, S. Mukherjee, L.C. Turrubiartes and B.K. Banik, Ultrasound-Assisted Aza-Michael Reaction in Water: A Green Procedure, Ultrason. Sonochem., 19, 969 (2012); https://doi.org/10.1016/j.ultsonch.2011.11.009
M.K. Chaudhuri, S. Hussain, M.L. Kantam and B. Neelima, Boric acid: A Novel and Safe Catalyst for Aza-Michael Reactions in Water, Tetrahedron Lett., 46, 8329 (2005); https://doi.org/10.1016/j.tetlet.2005.09.167
S. Kobayashi and K. Manabe, Development of Novel Lewis Acid Catalysts for Selective Organic Reactions in Aqueous Media, Acc. Chem. Res., 35, 209 (2002); https://doi.org/10.1021/ar000145a