Main Article Content

Abstract

A new series of N,7-diphenyl-7H-benzo[7,8]chromeno[2,3-d]pyrimidin-8-amine derivatives was synthesized using formic acid as catalyzed and solvent. The structures of new derivatives were confirmed by the spectral data and elemental analyses. Moreover, antimicrobial and antifungal activities has been carryout using S. aureus, S. pyogenes, E. coli, P. aeruginosa, C. albicans, A. niger and drugs nystatin, greseofulvin, ciprofloxacin, chloramphenicol for all the present compounds.

Keywords

Chromene Pyrimidine Biological activity Formic acid

Article Details

How to Cite
Bhola, Y., Dodeja, K., Dholaria, P., & Naliapara, Y. (2019). Synthesis of Formic Acid Catalyzed and Cyclized Novel Modified Route for N,7-diphenyl-7H-benzo[7,8]chromeno[2,3-d]pyrimidin-8-amine Derivatives and Study of their Antimicrobial Profile. Asian Journal of Organic & Medicinal Chemistry, 4(4), 273–276. https://doi.org/10.14233/ajomc.2019.AJOMC-P194

References

  1. Y.A.M.M. Elshaier, M.A. Shaaban, M.K. Abd El Hamid, M.H. Abdelrahman, M.A. Abou-Salim, S.M. Elgazwi and F. Halaweish, Design and Synthesis of Pyrazolo[3,4-d]pyrimidines: Nitric oxide Releasing Compounds Targeting Hepatocellular Carcinoma, Bioorg. Med. Chem., 25, 2956 (2017); https://doi.org/10.1016/j.bmc.2017.03.002.
  2. F. Belhadj, Z. Kibou, N. Cheikh, N. Choukchou-Braham and D. Villemin, Convenient Access to New 4-Substituted Aminopyrido[2,3-d]-pyrimidine Derivatives, Tetrahedron Lett., 56, 5999 (2015); https://doi.org/10.1016/j.tetlet.2015.09.042.
  3. A.M. El-Morsy, M.S. El-Sayed and H.S. Abulkhair, Synthesis, Characterization and in vitro Antitumor Evaluation of New Pyrazolo-[3,4-d]pyrimidine Derivatives, Open J. Med. Chem., 7, 1 (2017); https://doi.org/10.4236/ojmc.2017.71001.
  4. M.A. Abozeid, M.R. El-Kholany, A.-R.H. Abdel-Rahman and E.-S.I. El-Desoky, Synthesis, Antioxidant and Antimicrobial Evaluation of New Angular 6-Hydroxybenzo[f]chromene Anchored Derivatives, Int. J. Modern Org. Chem., 5, 1 (2018).
  5. M.M. Kandeel, A.M. Kamal, E.K.A. Abdelall and H.A.H. Elshemy, Synthesis of Some Novel Chromene Derivatives, Org. Chem.: An Indian J., 8, 342 (2012).
  6. M.M. Kandeel, A.M. Kamal, E.K.A. Abdelall and H.A.H. Elshemy, Synthesis of Novel Chromenes as Cytotoxic Agents, Der Pharma Chem., 4, 1653 (2012).
  7. S. Laskar and G. Brahmachari, Access to Biologically Relevant Diverse Chromene Heterocycles via Multicomponent Reactions (MCRs): Recent Advances, Signpost Open Access J. Organ. Biomol. Chem., 2, Article ID 010311 (2014).
  8. P. Shah and A.D. Westwell, The Role of Fluorine in Medicinal Chemistry, J. Enzyme Inhib.d Med. Chem., 22, 527 (2007); https://doi.org/10.1080/14756360701425014.
  9. O. Jacobson, D.O. Kiesewetter and X. Chen, Fluorine-18 Radio-chemistry, Labeling Strategies and Synthetic Routes, Bioconjug Chem., 26, 1 (2015); https://doi.org/10.1021/bc500475e.
  10. M. Cametti, B. Crousse, P. Metrangolo, R. Milani and G. Resnati, The Fluorous Effect in Biomolecular Applications, Chem. Soc. Rev., 41, 31 (2012); https://doi.org/10.1039/C1CS15084G.
  11. E.P. Gillis, K.J. Eastman, M.D. Hill, D.J. Donnelly and N.A. Meanwell, Applications of Fluorine in Medicinal Chemistry, J. Med. Chem., 58, 8315 (2015); https://doi.org/10.1021/acs.jmedchem.5b00258.
  12. P. Maienfisch and R.G. Hall, The Importance of Fluorine in the Life Science Industry, CHIMIA Int. J. Chem., 58, 93 (2004); https://doi.org/10.2533/000942904777678091.