Main Article Content

Abstract

Azide isocyanide-based multicomponent reactions allow the formation of relatively complex molecules through a one-pot synthesis. The proposed reactions have been coupled of four classes of compounds including 3-phenoxybenzaldehyde, various aromatic amines, TMS-N3 and tertiary butylisocyanide, which is known as Ugi-azide four-component reactions (UA-4CRs). It generated a diverse class of 1,5-disubstituted tetrazoles which are an important drug-like scaffold known for their ability to mimic the carcinogenic conformers used in medicinal chemistry. This work presents a concise, novel, general strategy to access a surplus of new heterocyclic scaffolds through the Ugi-azide reaction. Frequency in anticancer drug design can be partly attributed to their being extremely common in nature and there are multiple metabolic pathways and cellular processes within cancer pathology that can be susceptible to heterocycles-based drugs. The anticancer screening of derived molecules were carried out using one dose response study using NCI-60 cell-lines and found most active in breast cancer cell-lines.

Keywords

Tetrazoles Anticancer screening Ugi Coupling reaction

Article Details

How to Cite
Pandit, C., Dholaria, P., & Kapadiya, K. (2019). Anticancer Evaluation of 1,5-Disubstituted Tetrazoles using Ugi-Azide Four-Component Reactions (UA-4CRs). Asian Journal of Organic & Medicinal Chemistry, 4(4), 216–221. https://doi.org/10.14233/ajomc.2019.AJOMC-P204

References

  1. K. Kapadiya, Y. Jadeja, A. Banik and R. Khunt, in silico and in vitro Studies of Fluorinated Chroman-2-Carboxilic Acid Derivatives as an Anti-tubercular Agent, Folia Med. (Plovdiv), 61, 95 (2019); https://doi.org/10.2478/folmed-2018-0034.
  2. A. Váradi, T.C. Palmer, R.N. Dardashti and S. Majumdar, Isocyanide-Based Multicomponent Reactions for the Synthesis of Heterocycles, Molecules, 21, 19 (2015); https://doi.org/10.3390/molecules21010019.
  3. L. Weber, High-Diversity Combinatorial Libraries, Curr. Opin. Chem. Biol., 4, 295 (2000); https://doi.org/10.1016/S1367-5931(00)00092-2.
  4. C. Hulme and V. Gore, Multi-Component Reactions: Emerging Chemistry in Drug Discovery from Xylocain to Crixivan, Curr. Med. Chem., 10, 51 (2003); https://doi.org/10.2174/0929867033368600.
  5. C. Hulme and J. Dietrich, Emerging Molecular Diversity from the Intra-molecular Ugi Reaction: Iterative Efficiency in Medicinal Chemistry, J. Mol. Divers., 13, 195 (2009); https://doi.org/10.1007/s11030-009-9111-6.
  6. M.A. Malik, M.Y. Wani, S.A. Al-Thabaiti and R.A. Sheikh, Tetrazoles as Carboxylic Acid Isosteres: Chemistry and Biology, J. Incl. Phenom. Macrocycl. Chem., 78, 15 (2013); https://doi.org/10.1007/s10847-013-0334-x.
  7. C.J. Creighton, G.C. Leo, Y. Du and A.B. Reitz, Design, Synthesis, and Conformational Analysis of Eight-Membered Cyclic Peptido-mimetics Prepared using Ring Closing Metathesis, Bioorg. Med. Chem., 12, 4375 (2004); https://doi.org/10.1016/j.bmc.2004.06.015.
  8. S.Y. Kang, S.H. Lee, H.J. Seo, M.E. Jung, K. Ahn, J. Kim and J. Lee, Tetrazole-Biarylpyrazole Derivatives as Cannabinoid CB1 Receptor Antagonists, Bioorg. Med. Chem. Lett., 18, 2385 (2008); https://doi.org/10.1016/j.bmcl.2008.02.061.
  9. C. Hulme, P. Tempest, V. Ma, T. Nixey and G. Balow, Preparation of tetrazolylmethylpiperazines as Melanin Concentrating Hormone Receptor Antagonists, PCT Int. Appl. WO 2005019167 (2005).
  10. T. Nixey, J. Boylan, C. Hulme, D. Powers, A. Smith and A. Wong, Abstract of Papers. 231st National Meeting of the American Chemical Society; 2006. Mar 26–30, MEDI 277, Atlanta, GA (USA).
  11. J. Li, S.Y. Chen, J.J. Li, H. Wang, A.S. Hernandez, S. Tao, C.M. Musial, F. Qu, S. Swartz, S.T. Chao, N. Flynn, B.J. Murphy, D.A. Slusarchyk, R. Seethala, M. Yan, P. Sleph, G. Grover, M.A. Smith, B. Beehler, L. Giupponi, K.E. Dickinson, H. Zhang, W.G. Humphreys, B.P. Patel, M. Schwinden, T. Stouch, P.T.W. Cheng, S.A. Biller, W.R. Ewing, D. Gordon, J.A. Robl and J.A. Tino, Discovery of a Tetrazole-Based Growth Hormone Secretagogue: 4-(Hydroxybutyl)carbamic Acid 2-{5-[1-(2-Amino-2-methylpropionylamino)-2- benzyloxyethyl]tetrazol-1-yl}-ethyl Ester (BMS-317180), J. Med. Chem., 50, 5890 (2007); https://doi.org/10.1021/jm7010595.
  12. A. de F.S. Barreto, V.A. dos Santos and C.K.Z. Andrade, Consecutive Hydrazino-Ugi-azide Reactions: Synthesis of Acylhydrazines Bearing 1,5-Disubstituted Tetrazoles, Beilstein J. Org. Chem., 13, 2596 (2017); https://doi.org/10.3762/bjoc.13.256.
  13. D.P. Zarezin, V.N. Khrustalev and V.G. Nenajdenko, Concise Approach Toward Tetrazolo[1,5-a][1,4]benzodiazepines via a Novel Multicompo-nent Isocyanide-Based Condensation, J. Org. Chem., 82, 6100 (2017); https://doi.org/10.1021/acs.joc.7b00611.
  14. R.S. Borisov, A.I. Polyakov, L.A. Medvedeva, V.N. Khrustalev, N.I. Guranova and L.G. Voskressensky, Org. Lett., 12, 3894 (2010); https://doi.org/10.1021/ol101590w.
  15. T. Nixey, M. Kelly and C. Hulme, The One-Pot Solution Phase Preparation of Fused Tetrazole-Ketopiperazines, Tetrahedron Lett., 41, 8729 (2000); https://doi.org/10.1016/S0040-4039(00)01563-X.
  16. C. Kalinski, M. Umkehrer, S. Gonnard, N. Jager, G. Ross and W. Hiller, A New and Versatile Ugi/SNAr Synthesis of Fused 4,5-Dihydro-tetrazolo[1,5-a]quinoxalines, Tetrahedron Lett., 47, 2041 (2006); https://doi.org/10.1016/j.tetlet.2006.01.027.
  17. J.N. Gohel, K.S. Lunagariya, K.M. Kapadiya and R.C. Khunt, An Efficient Protocol for the Synthesis of 1,5-Disubstituted Tetrazole Derivatives via a TMS-N3 Based Ugi Reaction and their Anticancer Activity, ChemistrySelect, 3, 11657 (2018); https://doi.org/10.1002/slct.201802638.
  18. http://dtp.nci.nih.gov/branches/btb/ivclsp.html.
  19. J. Baell and M. Walters, Chemistry: Chemical Con Artists Foil Drug Discovery, Nature, 513, 481 (2014); https://doi.org/10.1038/513481a.