Main Article Content
Abstract
3-Methyl-5-acetyl-7-[(2-sulfanylidene-6-aryl-1,2-dihydropyrimidin-4-yl)amino]-1,2-benzisoxazoles (2a-n) were obtained from N-(5-acetyl-3-methyl-1,2-benzoxazol-7-yl)-3-arylprop-2-enamides (1a-n) and thiourea. Products (2a-n) oxidized with KMnO4 to afford 5-acetyl-7-[(2-sulfanylidene-6-aryl-1,2-dihydropyrimidin-4-yl)amino]-1,2-benzisoxazole-3-carboxylic acids (3a-n). Reaction of 3a-n with D-gluconic acid and pyridine yielded β-D-glucuronosyl-5-acetyl-7-[(2-sulfanylidene-6-aryl-1,2-dihydropyrimidin-4-yl)amino]-1,2-benzisoxazol-3-carboxylates (4a-n). The present synthesis featured the formation of dihydropyrimidine skeleton through ring closure of key intermediates and installation of pyrimidine ring with amino group. The structures of all the newly synthesized compounds were characterized by analytical data, IR, 1H NMR and mass spectrometry.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- B.C. Sallustio, L. Sabordo, A.M. Evans and R.L. Nation, Hepatic Disposition of Electrophilic Acyl Glucuronide Conjugates, Curr. Drug Metab., 1, 163 (2000); https://doi.org/10.2174/1389200003339153
- A.V. Stachulski, T.A. Baillie, B.K. Park, R.S. Obach, D.K. Dalvie, D.P. Williams, A. Srivastava, S.L. Regan, D.J. Antoine, C.E.P. Goldring, A.J.L. Chia, N.R. Kitteringham, L.E. Randle, H. Callan, J.L. Castrejon, J. Farrell, D.J. Naisbitt and M.S. Lennard, Med. Res. Rev., 33, 985 (2013); https://doi.org/10.1002/med.21273
- G. Yang, S. Ge, R. Singh, S. Basu, K. Shatzer, M. Zen, J. Liu, Y. Tu, C. Zhang, J. Wei, J. Shi, L. Zhu, Z. Liu, Y. Wang, S. Gao and M. Hu, Glucuronidation: Driving Factors and Their Impact on Glucuronide Disposition, Drug Metab. Rev., 23, 19 (2017); https://doi.org/10.1080/03602532.2017.1293682
- P. Zia-Amirhosseini, H. Spahn-Langguth and L.Z. Benet, Bioactivation by Glucuronide-Conjugate Formation, Adv. Pharmacol., 27, 385 (1994); https://doi.org/10.1016/S1054-3589(08)61040-6
- H.S. Langguth and L.Z. Benet, Acyl Glucuronides Revisited: Is the Glucuronidation Proces a Toxification as Well as a Detoxification Mechanism?, Drug Metab. Rev., 24, 5 (1992); https://doi.org/10.3109/03602539208996289
- M.J. Bailey and R.G. Dickinson, Chemical and Immunochemical Comparison of Protein Adduct Formation of Four Carboxylate Drugs in Rat Liver and Plasma, Chem. Res. Toxicol., 9, 659 (1996); https://doi.org/10.1021/tx960017o
- W.S. El-Serwy, H.S. Mohamed, W.S. El-Serwy, N.A. Mohamed, E.M.M. Kassem, K. Mahmoud and E.S. Nossier, Thiopyrimidine-5-carbonitrile Derivatives as VEGFR-2 Inhibitors: Synthesis, Anticancer Evaluation, Molecular Docking, ADME Predictions and QSAR Studies, ChemistrySelect, 5, 15243 (2020); https://doi.org/10.1002/slct.202002566
- B.A. Babgi, J.H. Alsayari, B. Davaasuren, A.H. Emwas, M. Jaremko, M.H. Abdellattif and M.A. Hussien, Synthesis, Structural Studies and Anticancer Properties of [CuBr(PPh3)2(4,6-Dimethyl-2-thiopyrimidine-kS], Crystals, 11, 688 (2021); https://doi.org/10.3390/cryst11060688
- S.M. Sondhi, R.N. Goyal, A.M. Lahoti, N. Singh, R. Shukla and R. Raghubir, Synthesis and Biological Evaluation of 2-Thiopyrimidine Derivatives, Bioorg. Med. Chem., 13, 3185 (2005); https://doi.org/10.1016/j.bmc.2005.02.047
- U.W. Hawas, M.A. Al-Omar, A.G.E. Amr and A.E.-F.G. Hammam, Synthesis of Some Thiopyrimidine and Thiazolopyrimidines Starting from 2,6-Dibenzylidene-3-Methylcyclohexanone and its Antimicrobial Activities, Arab. J. Chem., 5, 509 (2012); https://doi.org/10.1016/j.arabjc.2010.09.019
- H.G. Garg and C. Prakash, Potential Antidiabetics. 7. N1-(b-Hydroxy-benzylmethyl)-3-methyl-4-arylhydrazono-2-pyrazolin-5-ones and N1-(b-Hydroxybenzylmethyl)-3-methyl-4-arylazo-5-methyl- or -phenyl-pyrazoles, J. Med. Chem., 14, 175 (1971); https://doi.org/10.1021/jm00284a028
- C.J. Shishoo, U.S. Pathak, I.S. Rathod and K.S. Jain, Synthesis and Pharmacological Evaluation of Some Novel 5-Aryl-6-arylamine-1-phenylpyrazolo[3,4-d]pyrimidin-4(5H)-ones as Analgesic and Anti-inflammatory Agents, Indian J. Chem., 38B, 684 (1999).
- P.F. Lamie and J.N. Philoppes, 2-Thiopyrimidine/Chalcone Hybrids: Design, Synthesis, ADMET Prediction, and Anticancer Evaluation as STAT3/STAT5a Inhibitors, J. Enzym. Inhib. Med. Chem., 44, 377 (2014); https://doi.org/10.1016/j.ijantimicag.2014.06.001
- O.Y. Voskoboynik, O.S. Kolomoets, G.G. Berest, I.S. Nosulenko, Y.V. Martynenko and S.I. Kovalenko, Preparation and Biological Properties of 2-Thio-containing Pyrimidines and their Condensed Analogs, Chem. Heterocycl. Compd., 53, 256 (2017); https://doi.org/10.1007/s10593-017-2048-2
- Y.S. Zhao, M. Zhang and Q. Li, Protective Effects of 1,2-Benzisoxazole-3-methanesulfonamide (zonisamide)-Loaded Polymeric Micelles against Neurotoxicity in Spinal Cord: in vitro, J. Drug Deliv. Sci. Technol., 62, 102311 (2021); https://doi.org/10.1016/j.jddst.2020.102311
- Y.-S. Zhao, M. Zhang and Q. Li, Protective Effects of 1,2-Benzisoxazole-3-methanesulfonamide (Zonisamide)-Loaded Polymeric Micelles Against Neurotoxicity in Spinal Cord: in vitro, J. Drug Deliv. Sci. Technol., 62, 102311 (2021); https://doi.org/10.1016/j.jddst.2020.102311
- K.P. Rakesh, C.S. Shantharam, M.B. Sridhara, H.M. Manukumar and H.-L. Qin, Benzisoxazole: A Privileged Scaffold for Medicinal Chemistry, Med. Chem. Commun., 8, 2023 (2017); https://doi.org/10.1039/c7md00449d
- S.S. Kumari, K.S.R. Krishna Mohan Rao and N.V. Sbba Rao, Isoxazolo (7,8-d)Flavones, Proc. Indian Acad. Sci., 77A, 149 (1973); https://doi.org/10.1007/BF03048406
- J.C. Saunders and W.R.N. Williamson, Potential Antiinflammatory Compounds. 2. Acidic Antiinflammatory 1,2-Benzisoxazoles, J. Med. Chem., 22, 1554 (1979); https://doi.org/10.1021/jm00198a026
- S.V.K. Archana, R. Chandra and A. Kumar, Synthesis of Potential Quinazolinonyl Pyrazolines and Quinazolinyl Isoxazolines as Anticonvulsant Agents, Indian J. Chem., 41B, 2371 (2002).
- R.K. Wanare, Y.V. Punatkar and R.M. Jugade, Synthesis, Glucosylation and Polarographic Studies of Benzofused Pyrimidine Derivatives, Asian J. Org. Med. Chem., 6, 230 (2021); https://doi.org/10.14233/ajomc.2021.ajomc-p328
References
B.C. Sallustio, L. Sabordo, A.M. Evans and R.L. Nation, Hepatic Disposition of Electrophilic Acyl Glucuronide Conjugates, Curr. Drug Metab., 1, 163 (2000); https://doi.org/10.2174/1389200003339153
A.V. Stachulski, T.A. Baillie, B.K. Park, R.S. Obach, D.K. Dalvie, D.P. Williams, A. Srivastava, S.L. Regan, D.J. Antoine, C.E.P. Goldring, A.J.L. Chia, N.R. Kitteringham, L.E. Randle, H. Callan, J.L. Castrejon, J. Farrell, D.J. Naisbitt and M.S. Lennard, Med. Res. Rev., 33, 985 (2013); https://doi.org/10.1002/med.21273
G. Yang, S. Ge, R. Singh, S. Basu, K. Shatzer, M. Zen, J. Liu, Y. Tu, C. Zhang, J. Wei, J. Shi, L. Zhu, Z. Liu, Y. Wang, S. Gao and M. Hu, Glucuronidation: Driving Factors and Their Impact on Glucuronide Disposition, Drug Metab. Rev., 23, 19 (2017); https://doi.org/10.1080/03602532.2017.1293682
P. Zia-Amirhosseini, H. Spahn-Langguth and L.Z. Benet, Bioactivation by Glucuronide-Conjugate Formation, Adv. Pharmacol., 27, 385 (1994); https://doi.org/10.1016/S1054-3589(08)61040-6
H.S. Langguth and L.Z. Benet, Acyl Glucuronides Revisited: Is the Glucuronidation Proces a Toxification as Well as a Detoxification Mechanism?, Drug Metab. Rev., 24, 5 (1992); https://doi.org/10.3109/03602539208996289
M.J. Bailey and R.G. Dickinson, Chemical and Immunochemical Comparison of Protein Adduct Formation of Four Carboxylate Drugs in Rat Liver and Plasma, Chem. Res. Toxicol., 9, 659 (1996); https://doi.org/10.1021/tx960017o
W.S. El-Serwy, H.S. Mohamed, W.S. El-Serwy, N.A. Mohamed, E.M.M. Kassem, K. Mahmoud and E.S. Nossier, Thiopyrimidine-5-carbonitrile Derivatives as VEGFR-2 Inhibitors: Synthesis, Anticancer Evaluation, Molecular Docking, ADME Predictions and QSAR Studies, ChemistrySelect, 5, 15243 (2020); https://doi.org/10.1002/slct.202002566
B.A. Babgi, J.H. Alsayari, B. Davaasuren, A.H. Emwas, M. Jaremko, M.H. Abdellattif and M.A. Hussien, Synthesis, Structural Studies and Anticancer Properties of [CuBr(PPh3)2(4,6-Dimethyl-2-thiopyrimidine-kS], Crystals, 11, 688 (2021); https://doi.org/10.3390/cryst11060688
S.M. Sondhi, R.N. Goyal, A.M. Lahoti, N. Singh, R. Shukla and R. Raghubir, Synthesis and Biological Evaluation of 2-Thiopyrimidine Derivatives, Bioorg. Med. Chem., 13, 3185 (2005); https://doi.org/10.1016/j.bmc.2005.02.047
U.W. Hawas, M.A. Al-Omar, A.G.E. Amr and A.E.-F.G. Hammam, Synthesis of Some Thiopyrimidine and Thiazolopyrimidines Starting from 2,6-Dibenzylidene-3-Methylcyclohexanone and its Antimicrobial Activities, Arab. J. Chem., 5, 509 (2012); https://doi.org/10.1016/j.arabjc.2010.09.019
H.G. Garg and C. Prakash, Potential Antidiabetics. 7. N1-(b-Hydroxy-benzylmethyl)-3-methyl-4-arylhydrazono-2-pyrazolin-5-ones and N1-(b-Hydroxybenzylmethyl)-3-methyl-4-arylazo-5-methyl- or -phenyl-pyrazoles, J. Med. Chem., 14, 175 (1971); https://doi.org/10.1021/jm00284a028
C.J. Shishoo, U.S. Pathak, I.S. Rathod and K.S. Jain, Synthesis and Pharmacological Evaluation of Some Novel 5-Aryl-6-arylamine-1-phenylpyrazolo[3,4-d]pyrimidin-4(5H)-ones as Analgesic and Anti-inflammatory Agents, Indian J. Chem., 38B, 684 (1999).
P.F. Lamie and J.N. Philoppes, 2-Thiopyrimidine/Chalcone Hybrids: Design, Synthesis, ADMET Prediction, and Anticancer Evaluation as STAT3/STAT5a Inhibitors, J. Enzym. Inhib. Med. Chem., 44, 377 (2014); https://doi.org/10.1016/j.ijantimicag.2014.06.001
O.Y. Voskoboynik, O.S. Kolomoets, G.G. Berest, I.S. Nosulenko, Y.V. Martynenko and S.I. Kovalenko, Preparation and Biological Properties of 2-Thio-containing Pyrimidines and their Condensed Analogs, Chem. Heterocycl. Compd., 53, 256 (2017); https://doi.org/10.1007/s10593-017-2048-2
Y.S. Zhao, M. Zhang and Q. Li, Protective Effects of 1,2-Benzisoxazole-3-methanesulfonamide (zonisamide)-Loaded Polymeric Micelles against Neurotoxicity in Spinal Cord: in vitro, J. Drug Deliv. Sci. Technol., 62, 102311 (2021); https://doi.org/10.1016/j.jddst.2020.102311
Y.-S. Zhao, M. Zhang and Q. Li, Protective Effects of 1,2-Benzisoxazole-3-methanesulfonamide (Zonisamide)-Loaded Polymeric Micelles Against Neurotoxicity in Spinal Cord: in vitro, J. Drug Deliv. Sci. Technol., 62, 102311 (2021); https://doi.org/10.1016/j.jddst.2020.102311
K.P. Rakesh, C.S. Shantharam, M.B. Sridhara, H.M. Manukumar and H.-L. Qin, Benzisoxazole: A Privileged Scaffold for Medicinal Chemistry, Med. Chem. Commun., 8, 2023 (2017); https://doi.org/10.1039/c7md00449d
S.S. Kumari, K.S.R. Krishna Mohan Rao and N.V. Sbba Rao, Isoxazolo (7,8-d)Flavones, Proc. Indian Acad. Sci., 77A, 149 (1973); https://doi.org/10.1007/BF03048406
J.C. Saunders and W.R.N. Williamson, Potential Antiinflammatory Compounds. 2. Acidic Antiinflammatory 1,2-Benzisoxazoles, J. Med. Chem., 22, 1554 (1979); https://doi.org/10.1021/jm00198a026
S.V.K. Archana, R. Chandra and A. Kumar, Synthesis of Potential Quinazolinonyl Pyrazolines and Quinazolinyl Isoxazolines as Anticonvulsant Agents, Indian J. Chem., 41B, 2371 (2002).
R.K. Wanare, Y.V. Punatkar and R.M. Jugade, Synthesis, Glucosylation and Polarographic Studies of Benzofused Pyrimidine Derivatives, Asian J. Org. Med. Chem., 6, 230 (2021); https://doi.org/10.14233/ajomc.2021.ajomc-p328