Main Article Content

Abstract

7-Amino-3-methyl-5-(3′-aryl prop-2′-enoyl)-1,2-benzisoxazoles (2a-j) were synthesized by the condensation of 5-acetyl-7-amino-3-methyl-1,2-benzisoxazole (1) with aldehydes. The reaction of products 2a-j with urea produced 7-amino-3-methyl-5-(4′-aryl-2′-pyrimidin-6′-yl)-1,2-benzisoxazole derivatives (3a-j). Glucosylation of 3a-j with 2,3,4,6-tetra-O-acetyl glucuropyranosyl bromide (TAGBr) and tetrabutylammonium bromide (TBAB) gives corresponding glucosylated 7-amino-(β-D-2,3,4,6-tetra-O-acetyl glucopyranosyl)-3-methyl-5-(4′-aryl-2′-pyrimidin-6′-yl)-1,2-benzisoxazoles (4a-j). Glucosylated compounds 4a-j on deacetylation gives target products 7-amino-(β-D-glucopyranosyl)-3-methyl-5-(4′-aryl-2′-pyrimidin-6′-yl)-1,2-benzisoxazoles (5a-j). Glucosylation and deacetylation reaction carried out by Knenigs-Knorr reaction. All the synthesized products were characterized by elemental analysis, IR, 1H NMR, 13C NMR and mass spectroscopy. The biological and electrochemical activities of all the synthesized compounds were also examined.

Keywords

Benzisoxazoles Pyrimidines Urea N-Glucosides Electrochemistry.

Article Details

How to Cite
K. Wanare, R., V. Punatkar, Y., & M. Jugade, R. (2021). Synthesis, Glucosylation and Polarographic Studies of Benzofused Pyrimidine Derivatives. Asian Journal of Organic & Medicinal Chemistry, 6(3), 148–153. https://doi.org/10.14233/ajomc.2021.AJOMC-P328

References

  1. B. Lythgoe and L.S. Rayner, Substitution Reactions of Pyrimidine and its 2- and 4-Phenyl Derivatives, J. Chem. Soc., 2323 (1951); https://doi.org/10.1039/jr9510002323
  2. I.M. Lagoja, Pyrimidine as Constituent of Natural Biologically Active Compounds, Chem. Biodivers., 2, 1 (2005); https://doi.org/10.1002/cbdv.200490173
  3. T. Sasada, F. Kobayashi, N. Sakai and T. Konakahara, An Unprecedented Approach to 4,5-Disubstituted Pyrimidine Derivatives by a ZnCl2-Catalyzed Three-Component Coupling Reaction, Org. Lett., 11, 2161 (2009); https://doi.org/10.1021/ol900382j
  4. B.G. Vértessy and J. Tóth, Keeping Uracil Out of DNA: Physiological Role, Structure and Catalytic Mechanism of dUTPases, Acc. Chem. Res., 42, 97 (2009); https://doi.org/10.1021/ar800114w
  5. R.A. Cox, Macromolecular Structure and Properties of Ribonucleic Acids, Quart. Rev., 22, 499 (1968); https://doi.org/10.1039/qr9682200499
  6. F. López-Muñoz, R. Ucha-Udabe and C. Alamo, Neuropsychiatr. Dis. Treat., 1, 329 (2005).
  7. A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, P. Navabi, V. Zanganeh and A. Shafiee, Synthesis and Anticonvulsant Activity of New 2-Substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles, Bioorg. Lett., 15, 1863 (2005); https://doi.org/10.1016/j.bmcl.2005.02.014
  8. M. Díaz-Gavilán, J.A. Gómez-Vidal, F. Rodríguez-Serrano, J.A. Marchal, O. Caba, A. Aránega, M.A. Gallo, A. Espinosa and J.M. Campos, Anticancer Activity of (1,2,3,5-Tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and -purines against the MCF-7 Cell Line: Preliminary cDNA Microarray Studies, Bioorg. Med. Chem. Lett., 18, 1457 (2008); https://doi.org/10.1016/j.bmcl.2007.12.070
  9. 18th WHO model list of Essential medicines, 22 April (2014).
  10. E.C. Taylor and B.A. Liu, A New and Efficient Synthesis of Pyrrolo[2,3-d]-pyrimidine Anticancer Agents: Alimta (LY231514, MTA), Homo-Alimta, TNP-351 and Some Aryl 5-Substituted Pyrrolo[2,3-d]pyrimidines, J. Org. Chem., 68, 9938 (2003); https://doi.org/10.1021/jo030248h
  11. P. Herdewijn, J. Balzarini, M. Baba, R. Pauwels, A. Van Aerschot, G. Janssen and E. De Clercq, Synthesis and Anti-HIV Activity of Different Sugar-Modified Pyrimidine and Purine Nucleosides, J. Med. Chem., 31, 2040 (1988); https://doi.org/10.1021/jm00118a033
  12. H. Maeda, T. Akaike, Y. Miyamoto and M. Yoshida, Use of 4-Amino-6-hydroxypyrazolo[3,4-d]pyrimidine for the Manufacture of an Antihypertensive Agent, European Patent EP07959298 (1997).
  13. K.S. Jain, T.S. Chitre, P.B. Miniyar, M. K. Kathiravan, V. S. Bendre, V. S. Veer, S.R. Shahane and C.J. Shishoo, Biological and Medicinal Significance of Pyrimidines, Curr. Sci., 90, 793 (2006).
  14. V. Alagarsamy, V.R. Solomon and M. Murugan, Synthesis and Pharmacological Investigation of Novel 4-Benzyl-1-Substituted-4H-[1,2,4]triazolo[4,3-a]quinazolin-5-ones as New Class of H1-Antihist-aminic Agents, Bioorg. Med. Chem., 15, 4009 (2007); https://doi.org/10.1016/j.bmc.2007.04.001
  15. R.L. Tolman, R.K. Robins and L.B. Townsend, Pyrrolo[2,3-d]pyrimidine Nucleoside Antibiotics. Total Synthesis and Structure of Toyocamycin, Unamycin B, Vengicide, Antibiotic E-212, and Sangivamycin (BA-90912), J. Am. Chem. Soc., 90, 524 (1968); https://doi.org/10.1021/ja01004a076
  16. D.M. Huryn and M. Okabe, AIDS-Driven Nucleoside Chemistry, Chem. Rev., 92, 1745 (1992); https://doi.org/10.1021/cr00016a004
  17. H. Mitsuya, R. Yarchoan and S. Broder, Molecular Targets for AIDS therapy, Science, 249, 1533 (1990); https://doi.org/10.1126/science.1699273
  18. J.S. Lambert, M. Seidlin, R.C. Reichman, C.S. Plank, M. Laverty, G.D. Morse, C. Knupp, C. McLaren, C. Pettinelli, F.T. Valentine and R. Dolin, 2¢,3¢-Dideoxyinosine (ddI) in Patients with the Acquired Immuno-deficiency Syndrome or AIDS-Related Complex-A Phase I Trial, Engl. J. Med., 322, 1333 (1990); https://doi.org/10.1056/NEJM199005103221901
  19. M. Akhter, A. Husain, B. Azad and M. Ajmal, Aroylpropionic acid based 2,5-Disubstituted-1,3,4-oxadiazoles: Synthesis and their Anti-inflammatory and Analgesic Activities, Eur. J. Med. Chem., 44, 2372 (2009); https://doi.org/10.1016/j.ejmech.2008.09.005
  20. R. Marlaire, NASA Ames Reproduces the Building Blocks of Life in Laboratory, NASA, 5 March (2015).
  21. M. Nuevo, Y.J. Chen, W.J. Hu, J.M. Qiu, S.-R. Wu, H.-S. Fung, C.-C. Chu, T.-S. Yih, W.-H. Ip and C.-Y.R. Wu, Irradiation of Pyrimidine in Pure H2O Ice with High-Energy Ultraviolet Photons, Astrobiology, 14, 119 (2014); https://doi.org/10.1089/ast.2013.1093
  22. S.A. Sandford, P.P. Bera, T.J. Lee, C.K. Materese and M. Nuevo, Photosynthesis and Photo-Stability of Nucleic Acids in Prebiotic Extraterrestrial Environments, Top. Curr. Chem., 356, 123 (2014); https://doi.org/10.1007/128_2013_499
  23. M. Barbatti, A. Borin and S. Ullrich, Photoinduced Phenomena in Nucleic Acids, Springer-Verlag, Heidelberg, Berlin, pp 499 (2014).
  24. R.K. Wanare, Synthesis and Pharmacological Importance of 5-Substituted-1,2-Benzisoxazoles and their b-D-Glucuronides, J. Pharm. Biomed. Sci., 24, 97 (2012).
  25. R.K. Wanare, A Novel and Facile Synthesis of Thiopyrimidines and O-Glucosides, Asian J. Org. Med. Chem., 4, 65 (2019); https://doi.org/10.14233/ajomc.2019.AJOMC-P161
  26. V.N. Ingle, U.G. Upadhyay and S.T. Kharche, Synthesis of 4-O-Azomethino-D-Glucopyranosides, Indian J. Chem., 43B, 1743 (2004).
  27. R.K. Wanare, Highly Efficient Multistep Synthesis of Isoxazoles and their Glucosides, Asian J. Org. Med. Chem., 2, 130 (2017); https://doi.org/10.14233/ajomc.2017.AJOMC-P75
  28. Y.V. Punatkar, R.K. Wanare and R.M. Jugade, Synthesis and Biological Activities of 1,2-Benzisoxazoles and their N-Glucosides, J. Chem. Sci., 6, 61 (2016).
  29. R.M. Silverstein, F.X. Webster and D.J. Kiemle, Spectroscopic Identification of Organic Compounds, Wiley: New York, Ed.: 7 (2005).
  30. K.M. Hatzade, P.K. Gaidhane and V.N. Ingle, Synthesis and Biological Activities of New Hydroxy-3-pyrazolyl-4H-chromen-4-ones and their O-Glucosides, Indian J. Chem., 47B, 1260 (2008).
  31. P. Zuman, The Elucidation of Organic Electrode Processes, Academic Press: New York (1969).
  32. R.C. Kapoor and B.S. Aggarwal, Principles of Polarography, Wiley Eastern Limited, pp. 96-115 (1991).