Main Article Content

Abstract

In this work, the quantum computations of newly synthesized N-(4-hydroxyphenyl)picolinamide (4-HPP) is focused. Density functional theory (DFT) was used to perform the quantum calculations. The optimized molecular geometry was obtained using the B3LYP and MP2 methods employing 6-311++G(d,p) basis set, which served as the foundation for all subsequent calculations. The experimental data was compared with the calculated vibrational frequencies and NMR spectra. With the use of the molecular electrostatic potential surface (MEP) and the Fukui functions, the charge distribution, reactive regions and electrostatic potential were displayed. The chemical activity of the 4-HPP was evaluated by the energy difference between HOMO and LUMO. For better understanding of the intermolecular charge transfer (ICT), natural bond order analysis (NBO) was used. At various temperatures, thermodynamic parameters such as Gibb’s free energy, enthalpy and entropy were determined. The electrophilicity index was used to portray the molecule’s bioactivity and molecular docking was used to show the interaction between the ligand and the protein. The nature of the molecule was determined by drug similarity when expecting its application for medical purposes.

Keywords

Picolinamide Quantum computation Fukui functions Natural bond order analysis Molecular docking Drug-likeness.

Article Details

How to Cite
Singh, M., Kumar, M., Singh1, N., Sharma, S., Agarwal, N., Verma, I., … Javed, S. (2021). Quantum Computational, Spectroscopic and Molecular Docking Studies on N-(4-Hydroxyphenyl)picolinamide. Asian Journal of Organic & Medicinal Chemistry, 6(3), 186–203. https://doi.org/10.14233/ajomc.2021.AJOMC-P334

References

  1. J. Wu, J. Wang, D. Hu, M. He, L. Jin and B. Song, Synthesis and Antifungal Activity of Novel Pyrazolecarboxamide Derivatives Containing a Hydrazone Moiety, Chem. Cent. J., 6, 51 (2012); https://doi.org/10.1186/1752-153X-6-51
  2. C.-X. Tan, J.-Q. Weng, Z.-X. Liu, X.-H. Liu and W.-G. Zhao, Synthesis, Crystal Structure, and Fungicidal Activity of a Novel 1,2,3-Thiadiazole Compound, Phosphorus Sulfur Silicon Rel. Elem., 187, 990 (2012); https://doi.org/10.1080/10426507.2012.664219
  3. S. Mahesh, K.-C. Tang and M. Raj, Amide Bond Activation of Biological Molecules, Molecules, 23, 2615 (2018); https://doi.org/10.3390/molecules23102615
  4. N.N. Su, Y. Li, S.J. Yu, X. Zhang, X.H. Liu, W.G. Zhao, N.-N. Su, Y. Li, S.-J. Yu, X. Zhang, X.-H. Liu and W.-G. Zhao, Microwave-Assisted Synthesis of Some Novel 1,2,3-Triazoles By Click Chemistry, and their Biological Activity, Res. Chem. Intermed., 39, 759 (2013); https://doi.org/10.1007/s11164-012-0595-9
  5. D. Kaiser, A. Bauer, M. Lemmerer and N. Maulide, Amide Activation: An Emerging Tool for Chemoselective Synthesis, Chem. Soc. Rev., 47, 7899 (2018); https://doi.org/10.1039/C8CS00335A
  6. X. H. Liu, L. Pan, Y. Ma, J. Q. Weng, C. X. Tan, Y. H. Li, Y. X. Shi, B. J. Li, Z. M. Li and Y.G. Zhang, Design, Synthesis, Biological Activities, and 3D-QSAR of New N,N¢-Diacylhydrazines Containing 2-(2,4-dichlorophenoxy)propane Moiety, Chem. Biol. Drug Des., 78, 689 (2011); https://doi.org/10.1111/j.1747-0285.2011.01205.x
  7. Y.L. Xue, Y.G. Zhang and X.H. Liu, Synthesis, Crystal Structure, and Biological Activity of 1-Cyano-N-(4-bromophenyl)cyclopropane-carboxamide, Asian J. Chem., 24, 3016 (2012).
  8. Y.L. Xue, X.H. Liu and Y.G. Zhang, Synthesis, Crystal Structure and Biological Activity of 1-Cyano-N-phenylcyclopropanecarboxamide, Asian J. Chem., 24, 1571 (2012).
  9. J. Wu, S. Yang, B.-A. Song, P.S. Bhadury, D.-Y. Hu, S. Zeng and H.-P. Xie, Synthesis and Insecticidal Activities of Novel Neonicotinoid Analogs Bearing an Amide Moiety, J. Heterocycl. Chem., 48, 901 (2011); https://doi.org/10.1002/jhet.663
  10. Y. Xiao, X. Yang, B. Li, H. Yuan, S. Wan, Y. Xu and Z. Qin, Design, Synthesis and Antifungal/Insecticidal Evaluation of Novel Cinnamide Derivatives, Molecules, 16, 8945 (2011); https://doi.org/10.3390/molecules16118945
  11. B.I. Karolyi, S. Bosze, E. Orban, P. Sohar, L. Drahos, E. Gal and A. Csampai, Acylated mono-, bis- and tris- Cinchona-Based Amines Containing Ferrocene or Organic Residues: Synthesis, Structure and in vitro Antitumor Activity on Selected Human Cancer Cell Lines, Molecules, 17, 2316 (2012); https://doi.org/10.3390/molecules17032316
  12. B.S. Chhikara, N. St. Jean, D. Mandal, A. Kumar and K. Parang, Fatty Acyl Amide Derivatives of Doxorubicin: Synthesis and in vitro Anticancer Activities, Eur. J. Med. Chem., 46, 2037 (2011); https://doi.org/10.1016/j.ejmech.2011.02.056
  13. J. Wu, S. Kang, B. Song, D. Hu, M. He, L. Jin and S. Yang, Synthesis and Antibacterial Activity Against Ralstonia Solanacearum for Novel Hydrazone Derivatives Containing a Pyridine Moiety, Chem. Cent. J., 6, 28 (2012); https://doi.org/10.1186/1752-153X-6-28
  14. N.C. Singha and D.N. Sathyanarayana, 1H and 13C NMR Investigations of N,N¢-bis(2- and 3-Pyridinyl)-2,6-pyridine Dicarboxamides, J. Mol. Struct., 403, 123 (1997); https://doi.org/10.1016/S0022-2860(96)09409-4
  15. R. Wu, C. Zhu, X.-J. Du, L.-X. Xiong, S.-J. Yu, X.-H. Liu, Z.-M. Li and W.-G. Zhao, Synthesis, Crystal Structure and Larvicidal Activity of Novel Diamide Derivatives against Culex pipiens, Chem. Cent. J., 6, 99 (2012); https://doi.org/10.1186/1752-153X-6-99
  16. N.K. Kaushik, A. Mishra, A. Ali, J.S. Adhikari, A.K. Verma and R. Gupta, Synthesis, Characterization, and Antibacterial and Anticancer Screening of {M2+–Co3+–M2+} and {Co3+–M2+} (M is Zn, Cd, Hg) Heterometallic Complexes, J. Biol. Inorg. Chem., 17, 1217 (2012); https://doi.org/10.1007/s00775-012-0937-5
  17. A.P. Singh, N.K. Kaushik, A.K. Verma, G. Hundal and R. Gupta, Synthesis, Structure and Biological Activity of Copper(II) Complexes of 4-(2-Pyridylmethyl)-1,7-dimethyl-1,4,7-triazonane-2,6-dione and 4-(2-Pyridylethyl)-1,7-dimethyl-1,4,7-triazonane-2,6-dione, Eur. J. Med. Chem., 44, 1607 (2009); https://doi.org/10.1016/j.ejmech.2008.07.029
  18. A. Mishra, N.K. Kaushik, A.K. Verma and R. Gupta, Synthesis, Characterization and Antibacterial Activity of Cobalt(III) Complexes with Pyridine-Amide Ligands, Eur. J. Med. Chem., 43, 2189 (2008); https://doi.org/10.1016/j.ejmech.2007.08.015
  19. A.P. Singh, N.K. Kaushik, A.K. Verma and R. Gupta, Synthesis, Structure and Anticancer Activity of Copper(II) Complexes of N-Benzyl-2-(diethylamino)acetamide and 2-(Diethylamino)-N-phenylethylacet-amide, Indian J. Chem., 50A, 474 (2011).
  20. M.V. Solovskij, V.M. Denisov, E.F. Panarin, N.A. Petukhova and A.V. Purkina, Synthesis of Water-soluble Biologically Active Phenol (or Catechol) containing Copolymers of N-Vinyl-2-pyrrolidone, Macromol. Chem. Phys., 197, 2035 (1996); https://doi.org/10.1002/macp.1996.021970620
  21. C.M. Suter and T.B. Johnson, Synthesis of Thiazoles Containing Phenol and Catechol Groups. II, J. Am. Chem. Soc., 52, 1585 (1930); https://doi.org/10.1021/ja01367a046
  22. A. Ali, G. Hundal and R. Gupta, Co3+-Based Building Blocks with Appended Phenol and Catechol Groups: Examples of Placing Hydrogen Bond Donors and Acceptors in a Single Molecule, Cryst. Growth Des., 12, 1308 (2012); https://doi.org/10.1021/cg201369g
  23. G. Kumar, H. Aggarwal and R. Gupta, Cobalt Complexes Appended with para- and meta-Arylcarboxylic Acids: Influence of Cation, Solvent, and Symmetry on Hydrogen-Bonded Assemblies, Cryst. Growth Des., 13, 74 (2013); https://doi.org/10.1021/cg3011629
  24. R.J. Sarma and J.B. Baruah, Supramolecular and Host-Guest Chemistry of Bis-phenol and Analogues, Cryst. Growth Des., 7, 989 (2007); https://doi.org/10.1021/cg060899h
  25. C.P. Brock and L.L. Duncan, Anomalous Space-Group Frequencies for Monoalcohols CnHmOH, Chem. Mater., 6, 1307 (1994); https://doi.org/10.1021/cm00044a030
  26. K. Kobayashi, K. Endo, Y. Aoyama and H. Masuda, Hydrogen-Bonded Network Formation in Organic Crystals as Effected by Perpendicular and Divergent Hydroxyl Groups: The Crystal Structure of a Bisresorcinol Derivative of Anthracene, Tetrahedron Lett., 34, 7929 (1993); https://doi.org/10.1016/S0040-4039(00)61514-9
  27. Y. Aoyama, K. Endo, K. Kobayashi and H. Masuda, Hydrogen-Bonded Network and Enforced Supramolecular Cavities in Molecular Crystals: an Orthogonal Aromatic-Triad Strategy. Guest Binding, Molecular Recognition and Molecular Alignment Properties of a Bisresorcinol Derivative of Anthracene in the Crystalline State, Supramol. Chem., 4, 229 (1994); https://doi.org/10.1080/10610279408029475
  28. K. Yoshizawa, S. Toyota, F. Toda, M. Kato and I. Csöregh, A New Organic Zeolite Created by Molecular Aggregation of 1,1-bis(3,4-Dihydroxyphenyl)cyclohexane in the Solid State, CrystEngComm, 9, 786 (2007); https://doi.org/10.1039/b705163h
  29. M. Tominaga, K. Katagiri and I. Azumaya, Pseudopolymorph and Charge-Transfer Co-Crystal of Disubstituted Adamantane containing Dimethoxyphenol Moieties, Cryst. Growth Des., 9, 3692 (2009); https://doi.org/10.1021/cg900404h
  30. M. Tominaga, K. Katagiri and I. Azumaya, Hydrogen-Bonded Networks Formed from Tri- and Tetra-substituted Adamantanes bearing Dimethoxyphenol Moieties and their 1,3,5-Trinitrobenzene Complexes via Charge-Transfer Interactions, CrystEngComm, 12, 1164 (2010); https://doi.org/10.1039/B917654C
  31. M. Tominaga, H. Masu and I. Azumaya, Hydrogen-Bonding Networks of Adamantane-Based Bisphenol Molecules: Toward the Preparation of Molecular Crystals with Channels, Cryst. Growth Des., 11, 542 (2011); https://doi.org/10.1021/cg101427k
  32. N. Siddiqui and S. Javed, Quantum Computational, Spectroscopic Investigations on Ampyra (4-Aminopyridine) by DFT/td-dft with Different Solvents and Molecular Docking Studies, J. Mol. Struct., 1224, 129021 (2021); https://doi.org/10.1016/j.molstruc.2020.129021
  33. A. Ali, D. Bansal, N.K. Kaushik, N. Kaushik, E.H. Choi and R. Gupta, Syntheses, Characterization and Anticancer Activities of Pyridine-amide Based Compounds Containing Appended Phenol or Catechol Groups, J. Chem. Sci., 126, 1091 (2014); https://doi.org/10.1007/s12039-014-0671-3
  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, R. Cheeseman, J. Montgomer, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, C. Gonzalez, M.W. Wong and J.A. Pople, Gaussian 03, Revision C. 02, Gaussian Inc., Wallingford, CT, 2004.
  35. F. Neese, The ORCA Program System, WIREs Comput. Mol. Sci., 2, 73 (2012); https://doi.org/10.1002/wcms.81
  36. M.H. Jomroz, Vibrational Energy Distribution Analysis, VEDA4, Warsaw (2004).
  37. T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
  38. E.F. Pettersen, T.D. Goddard, C.C. Huang, D.M. Greenblatt, G.S. Couch, E.C. Meng and T.E. Ferrin, UCSF Chimera-A Visualization System for Exploratory Research and Analysis, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
  39. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
  40. A. Daina, O. Michielin and V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
  41. D.A. Safin, K. Robeyns and Y. Garcia, 1,2,4-Triazole-based Molecular Switches: Crystal Structures, Hirshfeld Surface Analysis and Optical Properties, CrystEngComm, 18, 7284 (2016); https://doi.org/10.1039/C6CE00749J
  42. G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, Wiley: Chichester, Eds. 3 (2001).
  43. J. Marshal, FT-Raman and FT-IR Spectra of a Fluoroquinolone Complex, Indian J. Phys. B, 72B, 661 (1998).
  44. E.T.G. Lutz and J.H.V. Maas, Structural Information from OH-Stretching Vibrations-XVI. On the Intra- and Intermolecular Interactions of Saturated Tertiary Alcohols in CCl4 and CS2, Spectrochim. Acta A Mol. Spectrosc., 41, 943 (1985); https://doi.org/10.1016/0584-8539(85)80228-2
  45. B. Edwin and I. Hubert Joe, Vibrational Spectral Analysis of Anti-neurodegenerative Drug Levodopa: A DFT Study, J. Mol. Struct., 1034, 119 (2013); https://doi.org/10.1016/j.molstruc.2012.09.004
  46. L.J. Bellamy, The Infrared Spectra of a Complex Molecule, Wiley: New York, Eds. 3 (1975).
  47. S. Pinchas, D. Samuel and M. Weiss-Broday, The Infrared Absorption of 18O-labelled Benzamide, J. Chem. Soc., 1688 (1961); https://doi.org/10.1039/jr9610001688
  48. G. Varsanyi, Vibrational Spectra of Seven Hundred Benzene Derivatives, Academic Press: New York (1969).
  49. H. Sekino and R.J. Bartlett, Hyperpolarizabilities of the Hydrogen Fluoride Molecule: A Discrepancy between Theory and Experiment?, J. Chem. Phys., 84, 2726 (1986); https://doi.org/10.1063/1.450348
  50. J. Henriksson, T. Saue and P. Norman, Quadratic Response Functions in the Relativistic Four-component Kohn-Sham Approximation, J. Chem. Phys., 128, 024105 (2008); https://doi.org/10.1063/1.2816709
  51. J.P. Hermann, D. Ricard and J. Ducuing, Optical Nonlinearities in Conjugated Systems: b-Carotene, Appl. Phys. Lett., 23, 178 (1973); https://doi.org/10.1063/1.1654850
  52. S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak and A. Pietraszko, Novel Nonlinear Optical Crystals of Noncentrosymmetric Structure Based on Hydrogen Bonds Interactions Between Organic and Inorganic Molecules, Synth. Met., 127, 99 (2002); https://doi.org/10.1016/S0379-6779(01)00607-5
  53. C.S. Abraham, J.C. Prasana and S. Muthu, Quantum Mechanical, Spectroscopic and Docking Studies of 2-Amino-3-bromo-5-nitro-pyridine by Density Functional Method, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045
  54. F. Weinhold and L.C. Randis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press (2005).
  55. P. Rajesh, P. Kandan, S. Sathish, A. Manikandan, S. Gunasekaran, T. Gnanasambandan and S.B. Abirami, Vibrational Spectroscopic, UV–Vis, Molecular Structure and NBO Analysis of Rabeprazole, J. Mol. Struct., 1137, 277 (2017); https://doi.org/10.1016/j.molstruc.2017.01.072
  56. J. Liu, Z. Chen and S. Yuan, Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds, J. Zhejiang Univ. Sci. B, 6, 584 (2005); https://doi.org/10.1631/jzus.2005.B0584
  57. J.E. Carpenter, J.A. Bohmann, C.M. Morales and F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, (2001).
  58. K. Fukui, Role of Frontier Orbitals in Chemical Reactions, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
  59. S. Balachandar and M. Dhandapani, Biological Action of Molecular Adduct Pyrazole: Trichloroacetic Acid on Candida albicans and ctDNA - A Combined Experimental, Fukui Functions Calculation and Molecular Docking Analysis, J. Mol. Struct., 1184, 129 (2019); https://doi.org/10.1016/j.molstruc.2019.02.006
  60. C.-G. Zhan, J.A. Nichols and D.A. Dixon, Ionization Potential, Electron Affinity, Electronegativity, Hardness, and Electron Excitation Energy: Molecular Properties from Density Functional Theory Orbital Energies, J. Phys. Chem. A, 107, 4184 (2003); https://doi.org/10.1021/jp0225774
  61. N.M. O’boyle, A.L. Tenderholt and K.M. Langner, cclib: A Library for Package-independent Computational Chemistry Algorithms, J. Comput. Inside Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
  62. H. Tandon, J. Bioequivalence Bioavailab., 9, 528 (2017);
  63. R. Parthasarathi, V. Subramanian, D.R. Roy and P.K. Chattaraj, Electrophilicity Index as a Possible Descriptor of Biological Activity, Bioorg. Med. Chem., 12, 5533 (2004); https://doi.org/10.1016/j.bmc.2004.08.013
  64. D.R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian and P.K. Chattaraj, Electrophilicity as a Possible Descriptor for Toxicity Prediction, Bioorg. Med. Chem., 13, 3405 (2005); https://doi.org/10.1016/j.bmc.2005.03.011
  65. J.B. Ott and J.B. Goates, Chemical Thermodynamics: Principles and Applications, Academic Press, San Diego (2000).
  66. F.L. Hirshfeld, Bonded-Atom Fragments for Describing Molecular Charge Densities, Theor. Chim. Acta, 44, 129 (1977); https://doi.org/10.1007/BF00549096
  67. M.A. Spackman and D. Jayatilaka, Hirshfeld Surface Analysis, CrystEngComm, 11, 19 (2009); https://doi.org/10.1039/B818330A
  68. W. Wang, Y. Ling, L.-J. Yang, Q.-L. Liu, Y.-H. Luo and B.-W. Sun, Crystals of 4-(2-Benzimidazole)-1,2,4-triazole and its Hydrate: Preparations, Crystal Structure and Hirshfeld Surfaces Analysis, Res. Chem. Intermed., 42, 3157 (2016); https://doi.org/10.1007/s11164-015-2203-2
  69. A. Fatima, K. Pooja, S. Savita, M. Singh, I. Verma, N. Siddiqui and S. Javed, Quantum Chemical, Experimental Spectroscopic, Hirshfeld Surface and Molecular Docking Studies of the Antimicrobial Drug Sulfathiazole, J. Mol. Struct., 1245, 131118 (2021); https://doi.org/10.1016/j.molstruc.2021.131118