Main Article Content
Abstract
In present work, 1-methylnicotinamide (1-MNA) has been investigated theoretically by density functional theory approach and investigated its vibrational spectroscopy. To complete the structure optimization, determination of vibrational frequencies and other valuable parameters, B3LYP method used with the 6-311++G(d,p) basis set. Atoms in molecules theory (AIM) had been used to evaluate ellipticity, isosurface projection by electron localization function and binding energies. The IR and Raman spectra have also been calculated computationally. NBO analysis employed to determine interactions of donor and acceptor. Fukui functions and molecular electrostatic potential (MEP) showed reactive regions of the molecule. UV-vis spectrum calculated using TD-DFT/PCM methods with different solvents. Thermodynamic properties like free energy, enthalpy and entropy with various temperature were calculated. By the use of the electrophilicity index, the probability of the bioactive nature of the molecule was proved theoretically. Protein-ligand interactions calculated and established by molecular docking. The biological investigations for druglikeness also employed for the (1-MNA).
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- J. Gebicki, A. Sysa-Jedrzejowska, J. Adamus, A. Wozniacka, M. Rybak and J. Zielonka, 1-Methylnicotinamide: A Potent Anti-inflammatory Agent of Vitamin Origin, Pol. J. Pharmacol., 55, 109 (2003).
- S. Chlopicki, J. Swies, A. Mogielnicki, W. Buczko, M. Bartus, M. Lomnicka, J. Adamus and J. Gebicki, 1-Methylnicotinamide (MNA), A Primary Metabolite of Nicotinamide, Exerts Anti-thrombotic Activity Mediated by a Cyclooxygenase-2/Prostacyclin Pathway, Br. J. Pharmacol., 152, 230 (2000); https://doi.org/10.1038/sj.bjp.0707383
- K. Bryniarski, R. Biedron, A. Jakubowski, J. Marcinkiewicz and S. Chlopicki, Anti-inflammatory Effect of 1-Methylnicotinamide in Contact Hypersensitivity to Oxazolone in Mice; Involvement of Prostacyclin, Eur. J. Pharmacol., 578, 332 (2008); https://doi.org/10.1016/j.ejphar.2007.09.011
- T.B. Domagala, A. Szeffler, L.W. Dobrucki, J. Dropinski, S. Polanski, M. Leszczynska-Wiloch, K. Kotula-Horowitz, J. Wojciechowski, L. Wojnowski, A. Szczeklik and L. Kalinowski, Nitric Oxide Production and Endothelium-Dependent Vasorelaxation Ameliorated by N1-Methylnicotinamide in Human Blood Vessels, Hypertension, 59, 825 (2012); https://doi.org/10.1161/HYPERTENSIONAHA.111.183210
- K. Strom, D.M. Alamo, F. Ottosson, A. Edlund, L. Hjort, S.W. Jörgensen, P. Almgren, Y. Zhou, M. Martin-Rincon, C. Ekman, A. Pérez-López, O. Ekström, I. Perez-Suarez, M. Mattiasson, P. de Pablos-Velasco, N. Oskolkov, E. Ahlqvist, N. Wierup, L. Eliasson, A. Vaag, L. Groop, K.G. Stenkula, C. Fernandez, J.A.L. Calbet, H.-C. Holmberg and O. Hansson, N1-Methylnicotinamide is a Signalling Molecule Produced in Skeletal Muscle Coordinating Energy Metabolism, Sci. Rep., 8, 3016 (2018); https://doi.org/10.1038/s41598-018-21099-1
- M. Bartus, M. Fomnicka, R.B. Kostogrys, P. Kazmierczak, C. Watala, E.M. Slominska, R.T. Smoleñski, P.M. Pisulewski, J. Adamus, J. Gêbicki and S. Chlopicki, 1-Methylnicotinamide (MNA) Prevents Endothelial Dysfunction in Hypertriglyceridemic and Diabetic Rats, Pharmacol. Rep., 60, 127 (2008).
- A. Blazejczyk, M. Switalska, S. Chlopicki, A. Marcinek, J. Gebicki, M. Nowak, A. Nasulewicz-Goldeman and J. Wietrzyk, 1-Methyl-nicotinamide and its Structural Analog 1,4-dimethylpyridine for the Prevention of Cancer Metastasis, J. Exp. Clin. Cancer Res., 35, 110 (2016); https://doi.org/10.1186/s13046-016-0389-9
- J. Schmeisser, Mansfeld, D. Kuhlow, S. Weimer, S. Priebe, I. Heiland, M. Birringer, M. Groth, A. Segref, Y. Kanfi, N.L. Price, S. Schmeisser, S. Schuster, A.F.H. Pfeiffer, R. Guthke, M. Platzer, T. Hoppe, H.Y. Cohen, K. Zarse, D.A. Sinclair and M. Ristow, Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide, Nat. Chem. Biol., 9, 693 (2013); https://doi.org/10.1038/nchembio.1352
- Menavitin Produkte, die das Molekül 1-MNA beinhalten: das Novel Food mit natürlicher Intelligenz, Startup Valley (in German) (2020).
- G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris, A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-shell Atoms and Hydrides of the First-Row Elements, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064
- G.A. Petersson and M.A. Al-Laham, A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms, J. Chem. Phys., 94, 6081 (1991); https://doi.org/10.1063/1.460447
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria and M.A. Robb, R. Cheeseman, J. Montgomer, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C. 02, Gaussian Inc., Wallingford, CT (2004).
- F. Neese, The ORCA Program System, WIREs Comput. Mol. Sci., 2, 73 (2012); https://doi.org/10.1002/wcms.81
- M.H. Jomroz, Vibrational Energy Distribution Analysis, VEDA4, Warsaw (2004).
- A. Daina, O. Michielin and V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- Origin 8.0, OriginLab Corp., Northampton, MA (2007).
- C.S. Abraham, J.C. Prasana, S. Muthu, F. Rizwana B and M. Raja, Quantum Computational Studies, Spectroscopic (FT-IR, FT-Raman and UV–Vis) Profiling, Natural Hybrid Orbital and Molecular Docking Analysis on 2,4-Dibromoaniline, J. Mol. Struct., 1160, 393 (2018); https://doi.org/10.1016/j.molstruc.2018.02.022
- G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, Wiley: Chichester, Ed. 3 (2001).
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, vol. 2 (1980).
- M. Tsuboi, 15N Isotope Effects on the Vibrational Frequencies of Aniline and Assignments of the Frequencies of its nh2 Group, Spectrochim. Acta, 16A, 505 (1960); https://doi.org/10.1016/0371-1951(60)80046-X
- G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Academia Kiado: Budapest, vols. 1 and 2 (1973).
- G. Varsanyi, Vibrational Spectra of Seven Hundred Benzene Derivatives, Academic Press: New York (1969).
- L.J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley: New York (1959).
- A.J. Barnes, M.A. Majid, M.A. Stuckey, P. Gregory and C.V. Stead, The Resonance Raman Spectra of Orange II and Para Red: Molecular Structure and Vibrational Assignment, Spectrochim. Acta A Mol. Biomol. Spectrosc., 41, 629 (1985); https://doi.org/10.1016/0584-8539(85)80050-7
- S. Pinchas, D. Samuel and M. Weiss-Broday, The Infrared Absorption of 18O-labelled Benzamide, J. Chem. Soc., 1688 (1961); https://doi.org/10.1039/jr9610001688
- J.S. Murry and K. Sen, Molecular Electrostatic Potential Concepts and Applications, Elsevier: Amesterdam (1996).
- O. Haji-Ghassemi, R.J. Blackler, N.M. Young and S.V. Evans, Antibody Recognition of Carbohydrate Epitopes, Glycobiology, 25, 920 (2015); https://doi.org/10.1093/glycob/cwv037
- J. Poater, M. Duran, M. Solà and B. Silvi, Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches, Chem. Rev., 105, 3911 (2005); https://doi.org/10.1021/cr030085x
- H. Sekino and R.J. Bartlett, Hyperpolarizabilities of the Hydrogen Fluoride Molecule: A Discrepancy Between Theory and Experiment?, J. Chem. Phys., 84, 2726 (1986); https://doi.org/10.1063/1.450348
- J. Henriksson, T. Saue and P. Norman, Quadratic Response Functions in the Relativistic Four-component Kohn-Sham Approximation, J. Chem. Phys., 128, 024105 (2008); https://doi.org/10.1063/1.2816709
- J.P. Hermann, D. Ricard and J. Ducuing, Optical Nonlinearities in Conjugated Systems: b-Carotene, Appl. Phys. Lett., 23, 178 (1973); https://doi.org/10.1063/1.1654850
- S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak and A. Pietraszko, Novel Nonlinear Optical Crystals of Noncentrosymmetric Structure Based on Hydrogen Bonds Interactions Between Organic and Inorganic Molecules, Synth. Met., 127, 99 (2002); https://doi.org/10.1016/S0379-6779(01)00607-5
- C. Cassidy, J.M. Halbout, W. Donaldson and C.L. Tang, Nonlinear Optical Properties of Urea, Opt. Commun., 29, 243 (1979); https://doi.org/10.1016/0030-4018(79)90027-0
- C.S. Abraham, J.C. Prasana and S. Muthu, Quantum Mechanical, Spectroscopic and Docking Studies of 2-Amino-3-bromo-5-nitro-pyridine by Density Functional Method, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045
- F. Weinhold and L.C. Randis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press (2005).
- C. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar and I.H. Joe, Structural Conformation and Vibrational Spectroscopic Studies of 2,6-bis(p-N,N-Dimethyl benzylidene)cyclohexanone using Density Functional Theory, J. Raman Spectrosc., 37, 1381 (2006); https://doi.org/10.1002/jrs.1554
- J. Liu, Z. Chen and S. Yuan, Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds, J. Zhejiang Univ. Sci., 6, 584 (2005); https://doi.org/10.1631/jzus.2005.B0584
- G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: New York, NY, USA (1969).
- K. Fukui, Role of Frontier Orbitals in Chemical Reactions, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
- S. Balachandar and M. Dhandapani, Biological Action of Molecular Adduct Pyrazole:Trichloroacetic Acid on Candida albicans and ctDNA - A Combined Experimental, Fukui Functions Calculation and Molecular Docking Analysis, J. Mol. Struct., 1184, 129 (2019); https://doi.org/10.1016/j.molstruc.2019.02.006
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, cclib: A Library for Package-Independent Computational Chemistry Algorithms, J. Comput. Inside Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- S. Xavier and S. Periandy, Spectroscopic (FT-IR, FT-Raman, UV and NMR) Investigation on 1-Phenyl-2-nitropropene by Quantum Computational Calculations, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 216 (2015); https://doi.org/10.1016/j.saa.2015.04.055
- A. Shalini, H. Tandon and T. Chakraborty, Molecular Electrophilicity Index - A Promising Descriptor for Predicting Toxicological Property, J. Bioequiv. Bioavailab., 9, 528 (2017); https://doi.org/10.4172/jbb.1000356
- R. Parthasarathi, V. Subramanian, D.R. Roy and P.K. Chattaraj, Electrophilicity Index as a Possible Descriptor of Biological Activity, Bioorg. Med. Chem., 12, 5533 (2004); https://doi.org/10.1016/j.bmc.2004.08.013
- D.R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian and P.K. Chattaraj, Electrophilicity as a Possible Descriptor for Toxicity Prediction, Bioorg. Med. Chem., 13, 3405 (2005); https://doi.org/10.1016/j.bmc.2005.03.011
- E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, UCSF Chimera-A Visualization System for Exploratory Research and Analysis, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- A. Daina, O. Michielin and V. Zoete, iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design using the GB/SA Approach, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
- S. Aayisha, T.S. Renuga Devi, S. Janani, S. Muthu, M. Raja and S. Sevvanthi, DFT, Molecular Docking and Experimental FT-IR, FT-Raman, NMR Inquisitions on 4-Chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine: Alpha-2-imidazoline Receptor Agonist Antihypertensive Agent, J. Mol. Struct., 1186, 468 (2019); https://doi.org/10.1016/j.molstruc.2019.03.056
References
J. Gebicki, A. Sysa-Jedrzejowska, J. Adamus, A. Wozniacka, M. Rybak and J. Zielonka, 1-Methylnicotinamide: A Potent Anti-inflammatory Agent of Vitamin Origin, Pol. J. Pharmacol., 55, 109 (2003).
S. Chlopicki, J. Swies, A. Mogielnicki, W. Buczko, M. Bartus, M. Lomnicka, J. Adamus and J. Gebicki, 1-Methylnicotinamide (MNA), A Primary Metabolite of Nicotinamide, Exerts Anti-thrombotic Activity Mediated by a Cyclooxygenase-2/Prostacyclin Pathway, Br. J. Pharmacol., 152, 230 (2000); https://doi.org/10.1038/sj.bjp.0707383
K. Bryniarski, R. Biedron, A. Jakubowski, J. Marcinkiewicz and S. Chlopicki, Anti-inflammatory Effect of 1-Methylnicotinamide in Contact Hypersensitivity to Oxazolone in Mice; Involvement of Prostacyclin, Eur. J. Pharmacol., 578, 332 (2008); https://doi.org/10.1016/j.ejphar.2007.09.011
T.B. Domagala, A. Szeffler, L.W. Dobrucki, J. Dropinski, S. Polanski, M. Leszczynska-Wiloch, K. Kotula-Horowitz, J. Wojciechowski, L. Wojnowski, A. Szczeklik and L. Kalinowski, Nitric Oxide Production and Endothelium-Dependent Vasorelaxation Ameliorated by N1-Methylnicotinamide in Human Blood Vessels, Hypertension, 59, 825 (2012); https://doi.org/10.1161/HYPERTENSIONAHA.111.183210
K. Strom, D.M. Alamo, F. Ottosson, A. Edlund, L. Hjort, S.W. Jörgensen, P. Almgren, Y. Zhou, M. Martin-Rincon, C. Ekman, A. Pérez-López, O. Ekström, I. Perez-Suarez, M. Mattiasson, P. de Pablos-Velasco, N. Oskolkov, E. Ahlqvist, N. Wierup, L. Eliasson, A. Vaag, L. Groop, K.G. Stenkula, C. Fernandez, J.A.L. Calbet, H.-C. Holmberg and O. Hansson, N1-Methylnicotinamide is a Signalling Molecule Produced in Skeletal Muscle Coordinating Energy Metabolism, Sci. Rep., 8, 3016 (2018); https://doi.org/10.1038/s41598-018-21099-1
M. Bartus, M. Fomnicka, R.B. Kostogrys, P. Kazmierczak, C. Watala, E.M. Slominska, R.T. Smoleñski, P.M. Pisulewski, J. Adamus, J. Gêbicki and S. Chlopicki, 1-Methylnicotinamide (MNA) Prevents Endothelial Dysfunction in Hypertriglyceridemic and Diabetic Rats, Pharmacol. Rep., 60, 127 (2008).
A. Blazejczyk, M. Switalska, S. Chlopicki, A. Marcinek, J. Gebicki, M. Nowak, A. Nasulewicz-Goldeman and J. Wietrzyk, 1-Methyl-nicotinamide and its Structural Analog 1,4-dimethylpyridine for the Prevention of Cancer Metastasis, J. Exp. Clin. Cancer Res., 35, 110 (2016); https://doi.org/10.1186/s13046-016-0389-9
J. Schmeisser, Mansfeld, D. Kuhlow, S. Weimer, S. Priebe, I. Heiland, M. Birringer, M. Groth, A. Segref, Y. Kanfi, N.L. Price, S. Schmeisser, S. Schuster, A.F.H. Pfeiffer, R. Guthke, M. Platzer, T. Hoppe, H.Y. Cohen, K. Zarse, D.A. Sinclair and M. Ristow, Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide, Nat. Chem. Biol., 9, 693 (2013); https://doi.org/10.1038/nchembio.1352
Menavitin Produkte, die das Molekül 1-MNA beinhalten: das Novel Food mit natürlicher Intelligenz, Startup Valley (in German) (2020).
G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley and J. Mantzaris, A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-shell Atoms and Hydrides of the First-Row Elements, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064
G.A. Petersson and M.A. Al-Laham, A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms, J. Chem. Phys., 94, 6081 (1991); https://doi.org/10.1063/1.460447
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria and M.A. Robb, R. Cheeseman, J. Montgomer, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W.Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision C. 02, Gaussian Inc., Wallingford, CT (2004).
F. Neese, The ORCA Program System, WIREs Comput. Mol. Sci., 2, 73 (2012); https://doi.org/10.1002/wcms.81
M.H. Jomroz, Vibrational Energy Distribution Analysis, VEDA4, Warsaw (2004).
A. Daina, O. Michielin and V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
T. Lu and F. Chen, Multiwfn: A Multifunctional Wavefunction Analyzer, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
Origin 8.0, OriginLab Corp., Northampton, MA (2007).
C.S. Abraham, J.C. Prasana, S. Muthu, F. Rizwana B and M. Raja, Quantum Computational Studies, Spectroscopic (FT-IR, FT-Raman and UV–Vis) Profiling, Natural Hybrid Orbital and Molecular Docking Analysis on 2,4-Dibromoaniline, J. Mol. Struct., 1160, 393 (2018); https://doi.org/10.1016/j.molstruc.2018.02.022
G. Socrates, Infrared and Raman Characteristic Group Frequencies, Table and Charts, Wiley: Chichester, Ed. 3 (2001).
L.J. Bellamy, The Infrared Spectra of Complex Molecules, Chapman and Hall: London, vol. 2 (1980).
M. Tsuboi, 15N Isotope Effects on the Vibrational Frequencies of Aniline and Assignments of the Frequencies of its nh2 Group, Spectrochim. Acta, 16A, 505 (1960); https://doi.org/10.1016/0371-1951(60)80046-X
G. Varsanyi, Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives, Academia Kiado: Budapest, vols. 1 and 2 (1973).
G. Varsanyi, Vibrational Spectra of Seven Hundred Benzene Derivatives, Academic Press: New York (1969).
L.J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley: New York (1959).
A.J. Barnes, M.A. Majid, M.A. Stuckey, P. Gregory and C.V. Stead, The Resonance Raman Spectra of Orange II and Para Red: Molecular Structure and Vibrational Assignment, Spectrochim. Acta A Mol. Biomol. Spectrosc., 41, 629 (1985); https://doi.org/10.1016/0584-8539(85)80050-7
S. Pinchas, D. Samuel and M. Weiss-Broday, The Infrared Absorption of 18O-labelled Benzamide, J. Chem. Soc., 1688 (1961); https://doi.org/10.1039/jr9610001688
J.S. Murry and K. Sen, Molecular Electrostatic Potential Concepts and Applications, Elsevier: Amesterdam (1996).
O. Haji-Ghassemi, R.J. Blackler, N.M. Young and S.V. Evans, Antibody Recognition of Carbohydrate Epitopes, Glycobiology, 25, 920 (2015); https://doi.org/10.1093/glycob/cwv037
J. Poater, M. Duran, M. Solà and B. Silvi, Theoretical Evaluation of Electron Delocalization in Aromatic Molecules by Means of Atoms in Molecules (AIM) and Electron Localization Function (ELF) Topological Approaches, Chem. Rev., 105, 3911 (2005); https://doi.org/10.1021/cr030085x
H. Sekino and R.J. Bartlett, Hyperpolarizabilities of the Hydrogen Fluoride Molecule: A Discrepancy Between Theory and Experiment?, J. Chem. Phys., 84, 2726 (1986); https://doi.org/10.1063/1.450348
J. Henriksson, T. Saue and P. Norman, Quadratic Response Functions in the Relativistic Four-component Kohn-Sham Approximation, J. Chem. Phys., 128, 024105 (2008); https://doi.org/10.1063/1.2816709
J.P. Hermann, D. Ricard and J. Ducuing, Optical Nonlinearities in Conjugated Systems: b-Carotene, Appl. Phys. Lett., 23, 178 (1973); https://doi.org/10.1063/1.1654850
S. Debrus, H. Ratajczak, J. Venturini, N. Pincon, J. Baran, J. Barycki, T. Glowiak and A. Pietraszko, Novel Nonlinear Optical Crystals of Noncentrosymmetric Structure Based on Hydrogen Bonds Interactions Between Organic and Inorganic Molecules, Synth. Met., 127, 99 (2002); https://doi.org/10.1016/S0379-6779(01)00607-5
C. Cassidy, J.M. Halbout, W. Donaldson and C.L. Tang, Nonlinear Optical Properties of Urea, Opt. Commun., 29, 243 (1979); https://doi.org/10.1016/0030-4018(79)90027-0
C.S. Abraham, J.C. Prasana and S. Muthu, Quantum Mechanical, Spectroscopic and Docking Studies of 2-Amino-3-bromo-5-nitro-pyridine by Density Functional Method, Spectrochim. Acta A Mol. Biomol. Spectrosc., 181, 153 (2017); https://doi.org/10.1016/j.saa.2017.03.045
F. Weinhold and L.C. Randis, Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press (2005).
C. James, A.A. Raj, R. Reghunathan, V.S. Jayakumar and I.H. Joe, Structural Conformation and Vibrational Spectroscopic Studies of 2,6-bis(p-N,N-Dimethyl benzylidene)cyclohexanone using Density Functional Theory, J. Raman Spectrosc., 37, 1381 (2006); https://doi.org/10.1002/jrs.1554
J. Liu, Z. Chen and S. Yuan, Study on the Prediction of Visible Absorption Maxima of Azobenzene Compounds, J. Zhejiang Univ. Sci., 6, 584 (2005); https://doi.org/10.1631/jzus.2005.B0584
G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press: New York, NY, USA (1969).
K. Fukui, Role of Frontier Orbitals in Chemical Reactions, Science, 218, 747 (1982); https://doi.org/10.1126/science.218.4574.747
S. Balachandar and M. Dhandapani, Biological Action of Molecular Adduct Pyrazole:Trichloroacetic Acid on Candida albicans and ctDNA - A Combined Experimental, Fukui Functions Calculation and Molecular Docking Analysis, J. Mol. Struct., 1184, 129 (2019); https://doi.org/10.1016/j.molstruc.2019.02.006
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, cclib: A Library for Package-Independent Computational Chemistry Algorithms, J. Comput. Inside Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
S. Xavier and S. Periandy, Spectroscopic (FT-IR, FT-Raman, UV and NMR) Investigation on 1-Phenyl-2-nitropropene by Quantum Computational Calculations, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 216 (2015); https://doi.org/10.1016/j.saa.2015.04.055
A. Shalini, H. Tandon and T. Chakraborty, Molecular Electrophilicity Index - A Promising Descriptor for Predicting Toxicological Property, J. Bioequiv. Bioavailab., 9, 528 (2017); https://doi.org/10.4172/jbb.1000356
R. Parthasarathi, V. Subramanian, D.R. Roy and P.K. Chattaraj, Electrophilicity Index as a Possible Descriptor of Biological Activity, Bioorg. Med. Chem., 12, 5533 (2004); https://doi.org/10.1016/j.bmc.2004.08.013
D.R. Roy, R. Parthasarathi, B. Maiti, V. Subramanian and P.K. Chattaraj, Electrophilicity as a Possible Descriptor for Toxicity Prediction, Bioorg. Med. Chem., 13, 3405 (2005); https://doi.org/10.1016/j.bmc.2005.03.011
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, UCSF Chimera-A Visualization System for Exploratory Research and Analysis, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
A. Daina, O. Michielin and V. Zoete, iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design using the GB/SA Approach, J. Chem. Inf. Model., 54, 3284 (2014); https://doi.org/10.1021/ci500467k
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
S. Aayisha, T.S. Renuga Devi, S. Janani, S. Muthu, M. Raja and S. Sevvanthi, DFT, Molecular Docking and Experimental FT-IR, FT-Raman, NMR Inquisitions on 4-Chloro-N-(4,5-dihydro-1H-imidazol-2-yl)-6-methoxy-2-methylpyrimidin-5-amine: Alpha-2-imidazoline Receptor Agonist Antihypertensive Agent, J. Mol. Struct., 1186, 468 (2019); https://doi.org/10.1016/j.molstruc.2019.03.056