Main Article Content
Abstract
Microwave assisted catalytic efficiency of Envirocat EPZ-10 was explored in solvent free green synthesis of 1-amidoalkyl-2-naphthols by the reaction of aldehyde, 2-naphthol and acetamide. The products formed were characterized by spectroscopic methods such as NMR, IR and mass spectroscopy. The merits of developed synthetic method are use of Envirocat EPZ-10 as eco-friendly, reusable and heterogeneous catalysts, solvent-free reaction, shorter reaction time and easy isolation of product.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- M.B. Gawande, P.S. Branco, I.D. Nogueira, C.A.A. Ghumman, N. Bundaleski, A. Santos, O.M.N.D. Teodoro and R. Luque, Catalytic Applications of a Versatile Magnetically Separable Fe–Mo (Nanocat-Fe–Mo) Nanocatalyst, Green Chem., 15, 682 (2013); https://doi.org/10.1039/c3gc36844k
- M.B. Gawande, P.S. Branco and R.S. Varma, Nano-magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies, Chem. Soc. Rev., 42, 3371 (2013); https://doi.org/10.1039/c3cs35480f
- P.T. Anastas, M.M. Kirchhoff and T.C. Williamson, Catalysis as a Foundational Pillar of Green Chemistry, Appl. Catal., A, 221, 3 (2001); https://doi.org/10.1016/S0926-860X(01)00793-1
- M.B. Gawande, V.D. Bonifacio, R. Luque, P.S. Branco and R.S. Varma, Benign by Design: Catalyst-free in-water, on-water Green Chemical Methodologies in Organic Synthesis, Chem. Soc. Rev., 42, 5522 (2013); https://doi.org/10.1039/c3cs60025d
- M.B. Gawande, V.D.B. Bonifacio, R. Luque, P.S. Branco and R.S. Varma, Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability, ChemSusChem, 7, 24 (2014); https://doi.org/10.1002/cssc.201300485
- M.B. Gawande, S.N. Shelke, R. Zboril and R.S. Varma, Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics, Acc. Chem. Res., 47, 1338 (2014); https://doi.org/10.1021/ar400309b
- R.A. Sheldon, Fundamentals of Green Chemistry: Efficiency in Reaction Design, Chem. Soc. Rev., 41, 1437 (2012); https://doi.org/10.1039/C1CS15219J
- B. Cornils and W.A. Herrmann, Concepts in Homogeneous Catalysis: the Industrial View, J. Catal., 216, 23 (2003); https://doi.org/10.1016/S0021-9517(02)00128-8
- D.J. Cole-Hamilton, Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling, Science, 299, 1702 (2003); https://doi.org/10.1126/science.1081881
- M.B. Gawande, A.K. Rathi, P.S. Branco, I.D. Nogueira, A. Velhinho, J.J. Shrikhande, U.U. Indulkar, R.V. Jayaram, C.A.A. Ghumman, N. Bundaleski and O.M. Teodoro, Regio- and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic Ferrite-Nickel Nanoparticles (Fe3O4-Ni) by using Glycerol as a Hydrogen Source, Chem. Eur. J., 18, 12628 (2012); https://doi.org/10.1002/chem.201202380
- S.J. Barlow, T.W. Bastock, J.H. Clark and S.R. Cullen, Explanation of An Unusual Substituent Effect in the Benzylation of Anisole and Identification of the Origin of the Active Site in Clayzic, Tetrahedron Lett., 34, 3339 (1993); https://doi.org/10.1016/S0040-4039(00)73698-7
- C.R. Reddy, Y.S. Bhat, G. Nagendrappa and B.S. Jai Prakash, Brønsted and Lewis Acidity of Modified Montmorillonite Clay Catalysts Determined by FT-IR spectroscopy, Catal. Today, 141, 157 (2009); https://doi.org/10.1016/j.cattod.2008.04.004
- K.Y. Lee and K.Y. Ko, Envirocat EPZ10: A Recyclable Solid Acid Catalyst for the Synthesis of Biginelli-type 3,4-Dihydropyrimidin-2(1H)-ones, Bull. Korean Chem. Soc., 25, 1929 (2004); https://doi.org/10.5012/bkcs.2004.25.12.1929
- B.P. Bandgar, L.S. Uppalla and D.S. Kurule, Solvent-free One-Pot Rapid Synthesis of 3-carboxycoumarins using Focused Microwaves, Green Chem., 1, 243 (1999); https://doi.org/10.1039/a905811g
- B.P. Bandgar, S.S. Makone and S.R. Kulkarni, Microwave Induced Synthesis of Geminal Diacetates from Aldehydes using Envirocat EPZ10® Without Solvent, Monatsh. Chem., 131, 417 (2000); https://doi.org/10.1007/PL00010311
- D.M. Pore, T.S. Shaikh, N.G. Patil, S.B. Dongare and U.V. Desai, Envirocat EPZ-10: A Solid Acid Catalyst for the Synthesis of 1,8-Dioxo-octahydroxanthenes in Aqueous Medium, Synth. Commun., 40, 2215 (2010); https://doi.org/10.1080/00397910903221027
- I. Szatmari and F. Fulop, Syntheses and Transformations of 1-(a-Amino-benzyl)-2-Naphthol Derivatives, Curr. Org. Synth., 1, 155 (2004); https://doi.org/10.2174/1570179043485402
- S. Khanapure, M. Jagadale, R. Salunkhe and G. Rashinkar, Zirconocene Dichloride Catalyzed Multicomponent Synthesis of 1-Amidoalkyl-2-naphthols at Ambient Temperature, Res. Chem. Intermed., 42, 2075 (2015); https://doi.org/10.1007/s11164-015-2136-9
- D. Seebach and J.L. Matthews, b-Peptides: A Surprise at Every Turn, J. Chem. Soc. Chem. Commun., 21, 2015 (1997); https://doi.org/10.1039/a704933a
- S. Knapp, Synthesis of Complex Nucleoside Antibiotics, Chem. Rev., 95, 1859 (1995); https://doi.org/10.1021/cr00038a006
- M.M. Bandurraga, W. Fenical, S.F. Donovan and J. Clardy, Pseudo-pterolide, An Irregular Diterpenoid with Unusual Cytotoxic Properties from the Caribbean Sea Whip Pseudopterogorgia acerosa (Pallas) (Gorgonacea), J. Am. Chem. Soc., 104, 6463 (1982); https://doi.org/10.1021/ja00387a059
- W.S.I. Abou-Elmagd and A.I. Hashem, Synthesis of 1-Amidoalkyl-2-naphthols and Oxazine Derivatives with Study of their Antibacterial and Antiviral Activities, Med. Chem. Res., 22, 2005 (2013); https://doi.org/10.1007/s00044-012-0205-9
- M. Grundke, H.M. Himmel, E. Wettwer, H.O. Barbe and U. Ravens, Characterization of Ca2+-Antagonistic Effects of Three Metabolites of the New Antihypertensive Agent Naftopidil, (naphthyl)Hydroxy-Naftopidil, (phenyl)Hydroxy-Naftopidil and O-Desmethyl-Naftopidil, J. Cardiovasc. Pharmacol., 18, 918 (1991); https://doi.org/10.1097/00005344-199112000-00020
- A. Shen, C.T. Tasai and C.L. Chen, Synthesis and Cardiovascular Evaluation of N-Substituted 1-Aminomethyl-2-naphthols, Eur. J. Med. Chem., 34, 877 (1999); https://doi.org/10.1016/S0223-5234(99)00204-4
- Y. Kusakabe, J. Nagatsu, M. Shibuya, O. Kawaguchi, C. Hirose and S. Shirato, Minimycin, A New Antibiotic, J. Antibiot. (Tokyo), 25, 44 (1972); https://doi.org/10.7164/antibiotics.25.44
- S. Remillard, L.I. Rebhun, G.A. Howie and S.M. Kupchan, Antimitotic Activity of the Potent Tumor Inhibitor Maytansine, Science, 189, 1002 (1975); https://doi.org/10.1126/science.1241159
- H. Ren, S. Grady, D. Gamenara, H. Heinzen, P. Moyna, S.L. Croft, H. Kendrick, V.M. Yardley and G. Moyna, Design, Synthesis and Biological Evaluation of a Series of Simple and Novel Potential Antimalarial Compounds, Bioorg. Med. Chem. Lett., 11, 1851 (2001); https://doi.org/10.1016/S0960-894X(01)00308-0
- H. Matsuoka, N. Ohi, M. Mihara, H. Suzuki, K. Miyamoto, N. Maruyama, K. Tsuji, N. Kato, T. Akimoto, Y. Takeda, K. Yano and T. Kuroki, Antirheumatic Agents: Novel Methotrexate Derivatives Bearing a Benzoxazine or Benzothiazine Moiety, J. Med. Chem., 40, 105 (1997); https://doi.org/10.1021/jm9605288
- H.S. Mosher, M.B. Frankel and M. Gregory, Heterocyclic Diphenyl-methane Derivatives, J. Am. Chem. Soc., 75, 5326 (1953); https://doi.org/10.1021/ja01117a054
- N.P. Selvam and P.T. Perumal, A New Synthesis of Acetamido Phenols Promoted by Ce(SO4)2, Tetrahedron Lett., 47, 7481 (2006); https://doi.org/10.1016/j.tetlet.2006.08.038
- S.B. Patil, P.R. Singh, M.P. Surpur and S.D. Samant, Cation-Exchanged Resins: Efficient Heterogeneous Catalysts for Facile Synthesis of 1-Amido-alkyl-2-naphthols from One-Pot, Three-Component Condensations of Amides/Ureas, Aldehydes and 2-Naphthol, Synth. Commun., 37, 1659 (2007); https://doi.org/10.1080/00397910701263858
- H.R. Shaterian and H. Yarahmadi, A Modified Reaction for the Preparation of Amidoalkyl Naphthols, Tetrahedron Lett., 49, 1297 (2008); https://doi.org/10.1016/j.tetlet.2007.12.093
- P. Zhang and Z.H. Zhang, Preparation of Amidoalkyl Naphthols by a Three-component Reaction Catalyzed by 2,4,6-trichloro-1,3,5-triazine under Solvent-free Conditions, Monatsh. Chem., 140, 199 (2009); https://doi.org/10.1007/s00706-008-0059-5
- A. Ahad, M. Farooqui, A.M.P. Khan, M. Mohsin and M. Farooqui, Asian J. Biochem. Pharma. Res., 4, 2231 (2012).
- V.K. Das, M. Borah and A.J. Thakur, Piper-Betle-Shaped Nano-S-Catalyzed Synthesis of 1-Amidoalkyl-2-naphthols under Solvent-Free Reaction Condition: A Greener Nanoparticle-Catalyzed Organic Synthesis Enhancement Approach, J. Org. Chem., 78, 3361 (2013); https://doi.org/10.1021/jo302682k
- M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad and M. Norouzi, Design of 1-Methylimidazolium Tricyano-methanide as the First Nanostructured Molten Salt and its Catalytic Application tn the Condensation Reaction of Various Aromatic Aldehydes, Amides and b-naphthol Compared with Tin Dioxide Nanoparticles, RSC Adv., 5, 45027 (2015); https://doi.org/10.1039/C5RA02718G
- H.R. Shaterian, A. Amirzadeh, F. Khorami and M. Ghashang, Environmentally Friendly Preparation of Amidoalkyl Naphthols, Synth. Commun., 38, 2983 (2008); https://doi.org/10.1080/00397910802006396
- S.S. Mansoor, K. Aswin, K. Logaiya, S.P.N. Sudhan and H. Ramadoss, Melamine Trisulfonic Acid: A New, Efficient and Reusable Catalyst for the Synthesis of Some Fused Pyranopyrrole Derivatives, J. Saudi Chem. Soc., 20, 393 (2016); https://doi.org/10.1016/j.jscs.2012.12.010
- H.R. Shaterian, H. Yarahmadi and M. Ghashang, Silica Supported Perchloric Acid (HClO4–SiO2): An Efficient and Recyclable Heterogeneous Catalyst for the One-pot Synthesis of Amidoalkyl Naphthols, Tetrahedron, 64, 1263 (2008); https://doi.org/10.1016/j.tet.2007.11.070
- S.B. Patil, P.R. Singh, M.P. Surpur and S.D. Samant, Ultrasound-Promoted Synthesis of 1-amidoalkyl-2-naphthols via a Three-Component Condensation of 2-naphthol, Ureas/Amides, and Aldehydes, Catalyzed by Sulfamic Acid under Ambient Conditions, Ultrason. Sonochem., 14, 515 (2007); https://doi.org/10.1016/j.ultsonch.2006.09.006
- M. Zandi and A.R. Sardarian, Eco-friendly and Efficient Multi-Component Method for Preparation of 1-amidoalkyl-2-naphthols under Solvent-free Conditions by Dodecylphosphonic Acid (DPA), C.R. Chim., 15, 365 (2012); https://doi.org/10.1016/j.crci.2011.11.012
- G. Srihari, M. Nagaraju and M.M. Murthy, Solvent-Free One-Pot Synthesis of Amidoalkyl Naphthols Catalyzed by Silica Sulfuric Acid, Helv. Chim. Acta, 90, 1497 (2007); https://doi.org/10.1002/hlca.200790156
- S. Kantevari, S.V.N. Vuppalapati and L. Nagarapu, Montmorillonite K10 Catalyzed Efficient Synthesis of Amidoalkyl Naphthols under Solvent Free Conditions, Catal. Commun., 8, 1857 (2007); https://doi.org/10.1016/j.catcom.2007.02.022
- B. Das, K. Laxminarayana, B. Ravikanth and B.R. Rao, Iodine Catalyzed Preparation of Amidoalkyl Naphthols in Solution and Under Solvent-free Conditions, J. Mol. Catal. Chem., 261, 180 (2007); https://doi.org/10.1016/j.molcata.2006.07.077
- L. Nagarapu, M. Baseeruddin, S. Apuri and S. Kantevari, Potassium dodecatungstocobaltate trihydrate (K5CoW12O40·3H2O): A Mild and Efficient Reusable Catalyst for the Synthesis of Amidoalkyl Naphthols in Solution and under Solvent-free Conditions, Catal. Commun., 8, 1729 (2007); https://doi.org/10.1016/j.catcom.2007.02.008
- A. Zali and A. Shokrolahi, Nano-Sulfated Zirconia as an Efficient, Recyclable and Environmentally Benign Catalyst for One-pot Three Component Synthesis of Amidoalkyl Naphthols, Chin. Chem. Lett., 23, 269 (2012); https://doi.org/10.1016/j.cclet.2011.12.002
References
M.B. Gawande, P.S. Branco, I.D. Nogueira, C.A.A. Ghumman, N. Bundaleski, A. Santos, O.M.N.D. Teodoro and R. Luque, Catalytic Applications of a Versatile Magnetically Separable Fe–Mo (Nanocat-Fe–Mo) Nanocatalyst, Green Chem., 15, 682 (2013); https://doi.org/10.1039/c3gc36844k
M.B. Gawande, P.S. Branco and R.S. Varma, Nano-magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies, Chem. Soc. Rev., 42, 3371 (2013); https://doi.org/10.1039/c3cs35480f
P.T. Anastas, M.M. Kirchhoff and T.C. Williamson, Catalysis as a Foundational Pillar of Green Chemistry, Appl. Catal., A, 221, 3 (2001); https://doi.org/10.1016/S0926-860X(01)00793-1
M.B. Gawande, V.D. Bonifacio, R. Luque, P.S. Branco and R.S. Varma, Benign by Design: Catalyst-free in-water, on-water Green Chemical Methodologies in Organic Synthesis, Chem. Soc. Rev., 42, 5522 (2013); https://doi.org/10.1039/c3cs60025d
M.B. Gawande, V.D.B. Bonifacio, R. Luque, P.S. Branco and R.S. Varma, Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability, ChemSusChem, 7, 24 (2014); https://doi.org/10.1002/cssc.201300485
M.B. Gawande, S.N. Shelke, R. Zboril and R.S. Varma, Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics, Acc. Chem. Res., 47, 1338 (2014); https://doi.org/10.1021/ar400309b
R.A. Sheldon, Fundamentals of Green Chemistry: Efficiency in Reaction Design, Chem. Soc. Rev., 41, 1437 (2012); https://doi.org/10.1039/C1CS15219J
B. Cornils and W.A. Herrmann, Concepts in Homogeneous Catalysis: the Industrial View, J. Catal., 216, 23 (2003); https://doi.org/10.1016/S0021-9517(02)00128-8
D.J. Cole-Hamilton, Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling, Science, 299, 1702 (2003); https://doi.org/10.1126/science.1081881
M.B. Gawande, A.K. Rathi, P.S. Branco, I.D. Nogueira, A. Velhinho, J.J. Shrikhande, U.U. Indulkar, R.V. Jayaram, C.A.A. Ghumman, N. Bundaleski and O.M. Teodoro, Regio- and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic Ferrite-Nickel Nanoparticles (Fe3O4-Ni) by using Glycerol as a Hydrogen Source, Chem. Eur. J., 18, 12628 (2012); https://doi.org/10.1002/chem.201202380
S.J. Barlow, T.W. Bastock, J.H. Clark and S.R. Cullen, Explanation of An Unusual Substituent Effect in the Benzylation of Anisole and Identification of the Origin of the Active Site in Clayzic, Tetrahedron Lett., 34, 3339 (1993); https://doi.org/10.1016/S0040-4039(00)73698-7
C.R. Reddy, Y.S. Bhat, G. Nagendrappa and B.S. Jai Prakash, Brønsted and Lewis Acidity of Modified Montmorillonite Clay Catalysts Determined by FT-IR spectroscopy, Catal. Today, 141, 157 (2009); https://doi.org/10.1016/j.cattod.2008.04.004
K.Y. Lee and K.Y. Ko, Envirocat EPZ10: A Recyclable Solid Acid Catalyst for the Synthesis of Biginelli-type 3,4-Dihydropyrimidin-2(1H)-ones, Bull. Korean Chem. Soc., 25, 1929 (2004); https://doi.org/10.5012/bkcs.2004.25.12.1929
B.P. Bandgar, L.S. Uppalla and D.S. Kurule, Solvent-free One-Pot Rapid Synthesis of 3-carboxycoumarins using Focused Microwaves, Green Chem., 1, 243 (1999); https://doi.org/10.1039/a905811g
B.P. Bandgar, S.S. Makone and S.R. Kulkarni, Microwave Induced Synthesis of Geminal Diacetates from Aldehydes using Envirocat EPZ10® Without Solvent, Monatsh. Chem., 131, 417 (2000); https://doi.org/10.1007/PL00010311
D.M. Pore, T.S. Shaikh, N.G. Patil, S.B. Dongare and U.V. Desai, Envirocat EPZ-10: A Solid Acid Catalyst for the Synthesis of 1,8-Dioxo-octahydroxanthenes in Aqueous Medium, Synth. Commun., 40, 2215 (2010); https://doi.org/10.1080/00397910903221027
I. Szatmari and F. Fulop, Syntheses and Transformations of 1-(a-Amino-benzyl)-2-Naphthol Derivatives, Curr. Org. Synth., 1, 155 (2004); https://doi.org/10.2174/1570179043485402
S. Khanapure, M. Jagadale, R. Salunkhe and G. Rashinkar, Zirconocene Dichloride Catalyzed Multicomponent Synthesis of 1-Amidoalkyl-2-naphthols at Ambient Temperature, Res. Chem. Intermed., 42, 2075 (2015); https://doi.org/10.1007/s11164-015-2136-9
D. Seebach and J.L. Matthews, b-Peptides: A Surprise at Every Turn, J. Chem. Soc. Chem. Commun., 21, 2015 (1997); https://doi.org/10.1039/a704933a
S. Knapp, Synthesis of Complex Nucleoside Antibiotics, Chem. Rev., 95, 1859 (1995); https://doi.org/10.1021/cr00038a006
M.M. Bandurraga, W. Fenical, S.F. Donovan and J. Clardy, Pseudo-pterolide, An Irregular Diterpenoid with Unusual Cytotoxic Properties from the Caribbean Sea Whip Pseudopterogorgia acerosa (Pallas) (Gorgonacea), J. Am. Chem. Soc., 104, 6463 (1982); https://doi.org/10.1021/ja00387a059
W.S.I. Abou-Elmagd and A.I. Hashem, Synthesis of 1-Amidoalkyl-2-naphthols and Oxazine Derivatives with Study of their Antibacterial and Antiviral Activities, Med. Chem. Res., 22, 2005 (2013); https://doi.org/10.1007/s00044-012-0205-9
M. Grundke, H.M. Himmel, E. Wettwer, H.O. Barbe and U. Ravens, Characterization of Ca2+-Antagonistic Effects of Three Metabolites of the New Antihypertensive Agent Naftopidil, (naphthyl)Hydroxy-Naftopidil, (phenyl)Hydroxy-Naftopidil and O-Desmethyl-Naftopidil, J. Cardiovasc. Pharmacol., 18, 918 (1991); https://doi.org/10.1097/00005344-199112000-00020
A. Shen, C.T. Tasai and C.L. Chen, Synthesis and Cardiovascular Evaluation of N-Substituted 1-Aminomethyl-2-naphthols, Eur. J. Med. Chem., 34, 877 (1999); https://doi.org/10.1016/S0223-5234(99)00204-4
Y. Kusakabe, J. Nagatsu, M. Shibuya, O. Kawaguchi, C. Hirose and S. Shirato, Minimycin, A New Antibiotic, J. Antibiot. (Tokyo), 25, 44 (1972); https://doi.org/10.7164/antibiotics.25.44
S. Remillard, L.I. Rebhun, G.A. Howie and S.M. Kupchan, Antimitotic Activity of the Potent Tumor Inhibitor Maytansine, Science, 189, 1002 (1975); https://doi.org/10.1126/science.1241159
H. Ren, S. Grady, D. Gamenara, H. Heinzen, P. Moyna, S.L. Croft, H. Kendrick, V.M. Yardley and G. Moyna, Design, Synthesis and Biological Evaluation of a Series of Simple and Novel Potential Antimalarial Compounds, Bioorg. Med. Chem. Lett., 11, 1851 (2001); https://doi.org/10.1016/S0960-894X(01)00308-0
H. Matsuoka, N. Ohi, M. Mihara, H. Suzuki, K. Miyamoto, N. Maruyama, K. Tsuji, N. Kato, T. Akimoto, Y. Takeda, K. Yano and T. Kuroki, Antirheumatic Agents: Novel Methotrexate Derivatives Bearing a Benzoxazine or Benzothiazine Moiety, J. Med. Chem., 40, 105 (1997); https://doi.org/10.1021/jm9605288
H.S. Mosher, M.B. Frankel and M. Gregory, Heterocyclic Diphenyl-methane Derivatives, J. Am. Chem. Soc., 75, 5326 (1953); https://doi.org/10.1021/ja01117a054
N.P. Selvam and P.T. Perumal, A New Synthesis of Acetamido Phenols Promoted by Ce(SO4)2, Tetrahedron Lett., 47, 7481 (2006); https://doi.org/10.1016/j.tetlet.2006.08.038
S.B. Patil, P.R. Singh, M.P. Surpur and S.D. Samant, Cation-Exchanged Resins: Efficient Heterogeneous Catalysts for Facile Synthesis of 1-Amido-alkyl-2-naphthols from One-Pot, Three-Component Condensations of Amides/Ureas, Aldehydes and 2-Naphthol, Synth. Commun., 37, 1659 (2007); https://doi.org/10.1080/00397910701263858
H.R. Shaterian and H. Yarahmadi, A Modified Reaction for the Preparation of Amidoalkyl Naphthols, Tetrahedron Lett., 49, 1297 (2008); https://doi.org/10.1016/j.tetlet.2007.12.093
P. Zhang and Z.H. Zhang, Preparation of Amidoalkyl Naphthols by a Three-component Reaction Catalyzed by 2,4,6-trichloro-1,3,5-triazine under Solvent-free Conditions, Monatsh. Chem., 140, 199 (2009); https://doi.org/10.1007/s00706-008-0059-5
A. Ahad, M. Farooqui, A.M.P. Khan, M. Mohsin and M. Farooqui, Asian J. Biochem. Pharma. Res., 4, 2231 (2012).
V.K. Das, M. Borah and A.J. Thakur, Piper-Betle-Shaped Nano-S-Catalyzed Synthesis of 1-Amidoalkyl-2-naphthols under Solvent-Free Reaction Condition: A Greener Nanoparticle-Catalyzed Organic Synthesis Enhancement Approach, J. Org. Chem., 78, 3361 (2013); https://doi.org/10.1021/jo302682k
M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad and M. Norouzi, Design of 1-Methylimidazolium Tricyano-methanide as the First Nanostructured Molten Salt and its Catalytic Application tn the Condensation Reaction of Various Aromatic Aldehydes, Amides and b-naphthol Compared with Tin Dioxide Nanoparticles, RSC Adv., 5, 45027 (2015); https://doi.org/10.1039/C5RA02718G
H.R. Shaterian, A. Amirzadeh, F. Khorami and M. Ghashang, Environmentally Friendly Preparation of Amidoalkyl Naphthols, Synth. Commun., 38, 2983 (2008); https://doi.org/10.1080/00397910802006396
S.S. Mansoor, K. Aswin, K. Logaiya, S.P.N. Sudhan and H. Ramadoss, Melamine Trisulfonic Acid: A New, Efficient and Reusable Catalyst for the Synthesis of Some Fused Pyranopyrrole Derivatives, J. Saudi Chem. Soc., 20, 393 (2016); https://doi.org/10.1016/j.jscs.2012.12.010
H.R. Shaterian, H. Yarahmadi and M. Ghashang, Silica Supported Perchloric Acid (HClO4–SiO2): An Efficient and Recyclable Heterogeneous Catalyst for the One-pot Synthesis of Amidoalkyl Naphthols, Tetrahedron, 64, 1263 (2008); https://doi.org/10.1016/j.tet.2007.11.070
S.B. Patil, P.R. Singh, M.P. Surpur and S.D. Samant, Ultrasound-Promoted Synthesis of 1-amidoalkyl-2-naphthols via a Three-Component Condensation of 2-naphthol, Ureas/Amides, and Aldehydes, Catalyzed by Sulfamic Acid under Ambient Conditions, Ultrason. Sonochem., 14, 515 (2007); https://doi.org/10.1016/j.ultsonch.2006.09.006
M. Zandi and A.R. Sardarian, Eco-friendly and Efficient Multi-Component Method for Preparation of 1-amidoalkyl-2-naphthols under Solvent-free Conditions by Dodecylphosphonic Acid (DPA), C.R. Chim., 15, 365 (2012); https://doi.org/10.1016/j.crci.2011.11.012
G. Srihari, M. Nagaraju and M.M. Murthy, Solvent-Free One-Pot Synthesis of Amidoalkyl Naphthols Catalyzed by Silica Sulfuric Acid, Helv. Chim. Acta, 90, 1497 (2007); https://doi.org/10.1002/hlca.200790156
S. Kantevari, S.V.N. Vuppalapati and L. Nagarapu, Montmorillonite K10 Catalyzed Efficient Synthesis of Amidoalkyl Naphthols under Solvent Free Conditions, Catal. Commun., 8, 1857 (2007); https://doi.org/10.1016/j.catcom.2007.02.022
B. Das, K. Laxminarayana, B. Ravikanth and B.R. Rao, Iodine Catalyzed Preparation of Amidoalkyl Naphthols in Solution and Under Solvent-free Conditions, J. Mol. Catal. Chem., 261, 180 (2007); https://doi.org/10.1016/j.molcata.2006.07.077
L. Nagarapu, M. Baseeruddin, S. Apuri and S. Kantevari, Potassium dodecatungstocobaltate trihydrate (K5CoW12O40·3H2O): A Mild and Efficient Reusable Catalyst for the Synthesis of Amidoalkyl Naphthols in Solution and under Solvent-free Conditions, Catal. Commun., 8, 1729 (2007); https://doi.org/10.1016/j.catcom.2007.02.008
A. Zali and A. Shokrolahi, Nano-Sulfated Zirconia as an Efficient, Recyclable and Environmentally Benign Catalyst for One-pot Three Component Synthesis of Amidoalkyl Naphthols, Chin. Chem. Lett., 23, 269 (2012); https://doi.org/10.1016/j.cclet.2011.12.002