Main Article Content

Abstract

Microwave assisted catalytic efficiency of Envirocat EPZ-10 was explored in solvent free green synthesis of 1-amidoalkyl-2-naphthols by the reaction of aldehyde, 2-naphthol and acetamide. The products formed were characterized by spectroscopic methods such as NMR, IR and mass spectroscopy. The merits of developed synthetic method are use of Envirocat EPZ-10 as eco-friendly, reusable and heterogeneous catalysts, solvent-free reaction, shorter reaction time and easy isolation of product.

Keywords

Envirocat EPZ-10 1-Amidoalkyl-2-naphthols Microwave synthesis Reusability.

Article Details

How to Cite
Joshi-Kulkarni, K., Chhowala, T., & Ajalkar1, B. (2021). Microwave Assisted Envirocat EPZ-10 Catalyzed Multi-component Synthesis of 1-Amidoalkyl-2-naphthols. Asian Journal of Organic & Medicinal Chemistry, 6(3), 204–210. https://doi.org/10.14233/ajomc.2021.AJOMC-P335

References

  1. M.B. Gawande, P.S. Branco, I.D. Nogueira, C.A.A. Ghumman, N. Bundaleski, A. Santos, O.M.N.D. Teodoro and R. Luque, Catalytic Applications of a Versatile Magnetically Separable Fe–Mo (Nanocat-Fe–Mo) Nanocatalyst, Green Chem., 15, 682 (2013); https://doi.org/10.1039/c3gc36844k
  2. M.B. Gawande, P.S. Branco and R.S. Varma, Nano-magnetite (Fe3O4) as a Support for Recyclable Catalysts in the Development of Sustainable Methodologies, Chem. Soc. Rev., 42, 3371 (2013); https://doi.org/10.1039/c3cs35480f
  3. P.T. Anastas, M.M. Kirchhoff and T.C. Williamson, Catalysis as a Foundational Pillar of Green Chemistry, Appl. Catal., A, 221, 3 (2001); https://doi.org/10.1016/S0926-860X(01)00793-1
  4. M.B. Gawande, V.D. Bonifacio, R. Luque, P.S. Branco and R.S. Varma, Benign by Design: Catalyst-free in-water, on-water Green Chemical Methodologies in Organic Synthesis, Chem. Soc. Rev., 42, 5522 (2013); https://doi.org/10.1039/c3cs60025d
  5. M.B. Gawande, V.D.B. Bonifacio, R. Luque, P.S. Branco and R.S. Varma, Solvent-Free and Catalysts-Free Chemistry: A Benign Pathway to Sustainability, ChemSusChem, 7, 24 (2014); https://doi.org/10.1002/cssc.201300485
  6. M.B. Gawande, S.N. Shelke, R. Zboril and R.S. Varma, Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics, Acc. Chem. Res., 47, 1338 (2014); https://doi.org/10.1021/ar400309b
  7. R.A. Sheldon, Fundamentals of Green Chemistry: Efficiency in Reaction Design, Chem. Soc. Rev., 41, 1437 (2012); https://doi.org/10.1039/C1CS15219J
  8. B. Cornils and W.A. Herrmann, Concepts in Homogeneous Catalysis: the Industrial View, J. Catal., 216, 23 (2003); https://doi.org/10.1016/S0021-9517(02)00128-8
  9. D.J. Cole-Hamilton, Homogeneous Catalysis-New Approaches to Catalyst Separation, Recovery, and Recycling, Science, 299, 1702 (2003); https://doi.org/10.1126/science.1081881
  10. M.B. Gawande, A.K. Rathi, P.S. Branco, I.D. Nogueira, A. Velhinho, J.J. Shrikhande, U.U. Indulkar, R.V. Jayaram, C.A.A. Ghumman, N. Bundaleski and O.M. Teodoro, Regio- and Chemoselective Reduction of Nitroarenes and Carbonyl Compounds over Recyclable Magnetic Ferrite-Nickel Nanoparticles (Fe3O4-Ni) by using Glycerol as a Hydrogen Source, Chem. Eur. J., 18, 12628 (2012); https://doi.org/10.1002/chem.201202380
  11. S.J. Barlow, T.W. Bastock, J.H. Clark and S.R. Cullen, Explanation of An Unusual Substituent Effect in the Benzylation of Anisole and Identification of the Origin of the Active Site in Clayzic, Tetrahedron Lett., 34, 3339 (1993); https://doi.org/10.1016/S0040-4039(00)73698-7
  12. C.R. Reddy, Y.S. Bhat, G. Nagendrappa and B.S. Jai Prakash, Brønsted and Lewis Acidity of Modified Montmorillonite Clay Catalysts Determined by FT-IR spectroscopy, Catal. Today, 141, 157 (2009); https://doi.org/10.1016/j.cattod.2008.04.004
  13. K.Y. Lee and K.Y. Ko, Envirocat EPZ10: A Recyclable Solid Acid Catalyst for the Synthesis of Biginelli-type 3,4-Dihydropyrimidin-2(1H)-ones, Bull. Korean Chem. Soc., 25, 1929 (2004); https://doi.org/10.5012/bkcs.2004.25.12.1929
  14. B.P. Bandgar, L.S. Uppalla and D.S. Kurule, Solvent-free One-Pot Rapid Synthesis of 3-carboxycoumarins using Focused Microwaves, Green Chem., 1, 243 (1999); https://doi.org/10.1039/a905811g
  15. B.P. Bandgar, S.S. Makone and S.R. Kulkarni, Microwave Induced Synthesis of Geminal Diacetates from Aldehydes using Envirocat EPZ10® Without Solvent, Monatsh. Chem., 131, 417 (2000); https://doi.org/10.1007/PL00010311
  16. D.M. Pore, T.S. Shaikh, N.G. Patil, S.B. Dongare and U.V. Desai, Envirocat EPZ-10: A Solid Acid Catalyst for the Synthesis of 1,8-Dioxo-octahydroxanthenes in Aqueous Medium, Synth. Commun., 40, 2215 (2010); https://doi.org/10.1080/00397910903221027
  17. I. Szatmari and F. Fulop, Syntheses and Transformations of 1-(a-Amino-benzyl)-2-Naphthol Derivatives, Curr. Org. Synth., 1, 155 (2004); https://doi.org/10.2174/1570179043485402
  18. S. Khanapure, M. Jagadale, R. Salunkhe and G. Rashinkar, Zirconocene Dichloride Catalyzed Multicomponent Synthesis of 1-Amidoalkyl-2-naphthols at Ambient Temperature, Res. Chem. Intermed., 42, 2075 (2015); https://doi.org/10.1007/s11164-015-2136-9
  19. D. Seebach and J.L. Matthews, b-Peptides: A Surprise at Every Turn, J. Chem. Soc. Chem. Commun., 21, 2015 (1997); https://doi.org/10.1039/a704933a
  20. S. Knapp, Synthesis of Complex Nucleoside Antibiotics, Chem. Rev., 95, 1859 (1995); https://doi.org/10.1021/cr00038a006
  21. M.M. Bandurraga, W. Fenical, S.F. Donovan and J. Clardy, Pseudo-pterolide, An Irregular Diterpenoid with Unusual Cytotoxic Properties from the Caribbean Sea Whip Pseudopterogorgia acerosa (Pallas) (Gorgonacea), J. Am. Chem. Soc., 104, 6463 (1982); https://doi.org/10.1021/ja00387a059
  22. W.S.I. Abou-Elmagd and A.I. Hashem, Synthesis of 1-Amidoalkyl-2-naphthols and Oxazine Derivatives with Study of their Antibacterial and Antiviral Activities, Med. Chem. Res., 22, 2005 (2013); https://doi.org/10.1007/s00044-012-0205-9
  23. M. Grundke, H.M. Himmel, E. Wettwer, H.O. Barbe and U. Ravens, Characterization of Ca2+-Antagonistic Effects of Three Metabolites of the New Antihypertensive Agent Naftopidil, (naphthyl)Hydroxy-Naftopidil, (phenyl)Hydroxy-Naftopidil and O-Desmethyl-Naftopidil, J. Cardiovasc. Pharmacol., 18, 918 (1991); https://doi.org/10.1097/00005344-199112000-00020
  24. A. Shen, C.T. Tasai and C.L. Chen, Synthesis and Cardiovascular Evaluation of N-Substituted 1-Aminomethyl-2-naphthols, Eur. J. Med. Chem., 34, 877 (1999); https://doi.org/10.1016/S0223-5234(99)00204-4
  25. Y. Kusakabe, J. Nagatsu, M. Shibuya, O. Kawaguchi, C. Hirose and S. Shirato, Minimycin, A New Antibiotic, J. Antibiot. (Tokyo), 25, 44 (1972); https://doi.org/10.7164/antibiotics.25.44
  26. S. Remillard, L.I. Rebhun, G.A. Howie and S.M. Kupchan, Antimitotic Activity of the Potent Tumor Inhibitor Maytansine, Science, 189, 1002 (1975); https://doi.org/10.1126/science.1241159
  27. H. Ren, S. Grady, D. Gamenara, H. Heinzen, P. Moyna, S.L. Croft, H. Kendrick, V.M. Yardley and G. Moyna, Design, Synthesis and Biological Evaluation of a Series of Simple and Novel Potential Antimalarial Compounds, Bioorg. Med. Chem. Lett., 11, 1851 (2001); https://doi.org/10.1016/S0960-894X(01)00308-0
  28. H. Matsuoka, N. Ohi, M. Mihara, H. Suzuki, K. Miyamoto, N. Maruyama, K. Tsuji, N. Kato, T. Akimoto, Y. Takeda, K. Yano and T. Kuroki, Antirheumatic Agents: Novel Methotrexate Derivatives Bearing a Benzoxazine or Benzothiazine Moiety, J. Med. Chem., 40, 105 (1997); https://doi.org/10.1021/jm9605288
  29. H.S. Mosher, M.B. Frankel and M. Gregory, Heterocyclic Diphenyl-methane Derivatives, J. Am. Chem. Soc., 75, 5326 (1953); https://doi.org/10.1021/ja01117a054
  30. N.P. Selvam and P.T. Perumal, A New Synthesis of Acetamido Phenols Promoted by Ce(SO4)2, Tetrahedron Lett., 47, 7481 (2006); https://doi.org/10.1016/j.tetlet.2006.08.038
  31. S.B. Patil, P.R. Singh, M.P. Surpur and S.D. Samant, Cation-Exchanged Resins: Efficient Heterogeneous Catalysts for Facile Synthesis of 1-Amido-alkyl-2-naphthols from One-Pot, Three-Component Condensations of Amides/Ureas, Aldehydes and 2-Naphthol, Synth. Commun., 37, 1659 (2007); https://doi.org/10.1080/00397910701263858
  32. H.R. Shaterian and H. Yarahmadi, A Modified Reaction for the Preparation of Amidoalkyl Naphthols, Tetrahedron Lett., 49, 1297 (2008); https://doi.org/10.1016/j.tetlet.2007.12.093
  33. P. Zhang and Z.H. Zhang, Preparation of Amidoalkyl Naphthols by a Three-component Reaction Catalyzed by 2,4,6-trichloro-1,3,5-triazine under Solvent-free Conditions, Monatsh. Chem., 140, 199 (2009); https://doi.org/10.1007/s00706-008-0059-5
  34. A. Ahad, M. Farooqui, A.M.P. Khan, M. Mohsin and M. Farooqui, Asian J. Biochem. Pharma. Res., 4, 2231 (2012).
  35. V.K. Das, M. Borah and A.J. Thakur, Piper-Betle-Shaped Nano-S-Catalyzed Synthesis of 1-Amidoalkyl-2-naphthols under Solvent-Free Reaction Condition: A Greener Nanoparticle-Catalyzed Organic Synthesis Enhancement Approach, J. Org. Chem., 78, 3361 (2013); https://doi.org/10.1021/jo302682k
  36. M.A. Zolfigol, S. Baghery, A.R. Moosavi-Zare, S.M. Vahdat, H. Alinezhad and M. Norouzi, Design of 1-Methylimidazolium Tricyano-methanide as the First Nanostructured Molten Salt and its Catalytic Application tn the Condensation Reaction of Various Aromatic Aldehydes, Amides and b-naphthol Compared with Tin Dioxide Nanoparticles, RSC Adv., 5, 45027 (2015); https://doi.org/10.1039/C5RA02718G
  37. H.R. Shaterian, A. Amirzadeh, F. Khorami and M. Ghashang, Environmentally Friendly Preparation of Amidoalkyl Naphthols, Synth. Commun., 38, 2983 (2008); https://doi.org/10.1080/00397910802006396
  38. S.S. Mansoor, K. Aswin, K. Logaiya, S.P.N. Sudhan and H. Ramadoss, Melamine Trisulfonic Acid: A New, Efficient and Reusable Catalyst for the Synthesis of Some Fused Pyranopyrrole Derivatives, J. Saudi Chem. Soc., 20, 393 (2016); https://doi.org/10.1016/j.jscs.2012.12.010
  39. H.R. Shaterian, H. Yarahmadi and M. Ghashang, Silica Supported Perchloric Acid (HClO4–SiO2): An Efficient and Recyclable Heterogeneous Catalyst for the One-pot Synthesis of Amidoalkyl Naphthols, Tetrahedron, 64, 1263 (2008); https://doi.org/10.1016/j.tet.2007.11.070
  40. S.B. Patil, P.R. Singh, M.P. Surpur and S.D. Samant, Ultrasound-Promoted Synthesis of 1-amidoalkyl-2-naphthols via a Three-Component Condensation of 2-naphthol, Ureas/Amides, and Aldehydes, Catalyzed by Sulfamic Acid under Ambient Conditions, Ultrason. Sonochem., 14, 515 (2007); https://doi.org/10.1016/j.ultsonch.2006.09.006
  41. M. Zandi and A.R. Sardarian, Eco-friendly and Efficient Multi-Component Method for Preparation of 1-amidoalkyl-2-naphthols under Solvent-free Conditions by Dodecylphosphonic Acid (DPA), C.R. Chim., 15, 365 (2012); https://doi.org/10.1016/j.crci.2011.11.012
  42. G. Srihari, M. Nagaraju and M.M. Murthy, Solvent-Free One-Pot Synthesis of Amidoalkyl Naphthols Catalyzed by Silica Sulfuric Acid, Helv. Chim. Acta, 90, 1497 (2007); https://doi.org/10.1002/hlca.200790156
  43. S. Kantevari, S.V.N. Vuppalapati and L. Nagarapu, Montmorillonite K10 Catalyzed Efficient Synthesis of Amidoalkyl Naphthols under Solvent Free Conditions, Catal. Commun., 8, 1857 (2007); https://doi.org/10.1016/j.catcom.2007.02.022
  44. B. Das, K. Laxminarayana, B. Ravikanth and B.R. Rao, Iodine Catalyzed Preparation of Amidoalkyl Naphthols in Solution and Under Solvent-free Conditions, J. Mol. Catal. Chem., 261, 180 (2007); https://doi.org/10.1016/j.molcata.2006.07.077
  45. L. Nagarapu, M. Baseeruddin, S. Apuri and S. Kantevari, Potassium dodecatungstocobaltate trihydrate (K5CoW12O40·3H2O): A Mild and Efficient Reusable Catalyst for the Synthesis of Amidoalkyl Naphthols in Solution and under Solvent-free Conditions, Catal. Commun., 8, 1729 (2007); https://doi.org/10.1016/j.catcom.2007.02.008
  46. A. Zali and A. Shokrolahi, Nano-Sulfated Zirconia as an Efficient, Recyclable and Environmentally Benign Catalyst for One-pot Three Component Synthesis of Amidoalkyl Naphthols, Chin. Chem. Lett., 23, 269 (2012); https://doi.org/10.1016/j.cclet.2011.12.002