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I N T R O D U C T I O N

Catalysis assist is the major concerns and challenges of
energy and sustainability through the development of greener
synthetic routes for the production of industrially important
organic compounds [1,2]. The green chemistry buoyed catalysts
leads to efficient and benign synthetic protocols that avoid the
use of volatile organic solvents, toxic reagents, harsh reaction
conditions as well as challenging and time-consuming, wasteful
separations [3-7]. Homogeneous catalytic systems result in
better activity, higher selectivity and the possibility to tune
the chemo-, regio- and enantioselectivity [8]. Though, widely
employed for various organic transformations they are associated
with a major drawback viz. difficulty in separation from the
reaction mixture [9]. On the other hand, heterogeneous catalysis
overcomes the drawbacks of homogeneous catalysis despite
having low activity and selectivity [10]. Commercially available
clay catalysts have attracted attention of researchers as they
are known for their Lewis acid activity which makes them
alternative catalysts [11]. Commercially available Envirocat
EPZ-10 prepared by supporting ZnCl2 on clay, is known to
contain predominantly strong Lewis acid sites as well as weak
Brønsted acid sites [12]. Hence, Envirocat EPZ-10 received
considerable attention and used as catalyst in various organic
transformations [13-16].

Heterocyclic compounds bearing 1,3-amino oxygenated
functional groups such as 1-amidoalkyl-2-naphthols are popular
due to their wide spectrum of pharmacological activities.
Theses scaffold convert to 1-aminoalkyl-2-naphthol derivatives

Microwave assisted catalytic efficiency of Envirocat EPZ-10 was
explored in solvent free green synthesis of 1-amidoalkyl-2-naphthols
by the reaction of aldehyde, 2-naphthol and acetamide. The products
formed were characterized by spectroscopic methods such as NMR,
IR and mass spectroscopy. The merits of developed synthetic method
are use of Envirocat EPZ-10 as eco-friendly, reusable and heterogeneous
catalysts, solvent-free reaction, shorter reaction time and easy isolation
of product.
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by amide hydrolysis, which exhibits hypotensive and bradycardia
activities [17,18]. 1-Amidoalkyl-2-naphthol core has been
involved in an extensive collection of therapeutically signi-
ficant drugs including nucleoside antibiotics and HIV protease
inhibitors such as ritonavir and lipinavir [19-21]. The biolo-
gically potent promising medicinal activities exhibited by these
motif’s are cytotoxicity, antiviral, antibacterial [22], α1-adreno-
ceptors blocking [23], cardiovascular [24], etc. 1,3-Oxazines
obtained from 1-amidoalkyl-2-naphthols also possesses
pharmacological properties such as antibiotic [25], antitumor
[26], antimalarial [27], antirheumatic [28] and anti-convulsant
[29] activities. Owing to the significant biological properties,
synthesis of 1-aminoalkyl-2-naphthols using green chemistry
principles is a frontier area of research in organic synthesis. In
this context, herein Envirocat EPZ-10 catalyzed microwave
assisted multi-component synthesis of 1-amido-alkyl-2-naphthols
under solvent-free conditions is reported.

E X P E R I M E N T A L

All reactions were carried out under air atmosphere in
dried glassware. Infrared spectra were measured with a Perkin-
Elmer one FTIR spectrophotometer. The samples were examined
as KBr discs 5% w/w. 1H NMR and 13C NMR spectra were
recorded on a Brucker AC (400 MHz for 1H NMR and 100
MHz for 13C NMR) spectrometer using CDCl3 as solvent and
tetramethylsilane (TMS) as an internal standard. Mass spectra
were recorded on a Shimadzu QP2010 GCMS. The microwave
used was of ONIDA company and domestic type. The melting
points were determined in an open capillary and are uncor-
rected. All the chemical were obtained from local suppliers
and used as received.

Sythesis: A mixture of aromatic aldehyde (1 mmol),
2-naphthol (1 mmol), amide/urea (1.1 mmol) and activated
Envirocat EPZ-10 (50 mg) was irradiated in a microwave oven
(240 W) at 120 ºC for appropriate time (5-10 min) and progress
of reaction was monitored by TLC. After completion of
reaction, reaction mixture was cooled to room temperature,
solid residue was dissolved in ethyl acetate and mixture stirred
for 5 min. The catalyst was recovered and the solvent was
evaporated to afford solid and purified by column chromato-
graphy (n-hexane/ethyl acetate) using silica gel.

N-[(2-Hydroxynaphthalen-1-yl)phenylmethyl)]-
acetamide (4a): White solid; IR (KBr, νmax, cm–1): 3351, 2969,
1640, 1598, 1507, 1344, 1146, 869, 744; 1H NMR (400 MHz,
CDCl3): δ 9.93 (s, 1H), 8.35 (s, 1H), 7.90 -7.88 (d, J = 7.2 Hz,
1H), 7.75-7.67 (m, 3H), 7.36-7.32 (t, 2H, J = 8.8), 7.25-7.11
(m, 6H), 1.99 (s, 3H); 13C NMR (100 MHz, CDCl3): δ  169.6,
153.5, 142.8, 132.7, 129.4, 128.8, 128.1, 126.6, 126.4, 126.3,
122.7, 119.1, 118.9, 48.5, 23.1; EI-MS: m/z 292 (M+1).

N-[(2-Hydroxynaphthalen-1-yl)-(4-flurophenyl)-
methyl)]acetamide (4b): White solid; IR (KBr, νmax, cm–1):
3421, 3315, 3071, 1640, 1597, 1578,1522, 1470, 1391, 1210,
1162, 1064, 946, 885, 787, 741, 712; 1H NMR (300 MHz,
DMSO-d6): δ 9.86 (s, 1H), 8.29 (d, J = 8.1 Hz, 1H), 7.92 (br.d,
1H), 7.79 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.25
(m, 1H), 7.23 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 8.7 Hz, 1H),
7.04-7.01 (m, 5H), 2.19 (s, 3H); 13C NMR (75 MHz, DMSO-
d6): δ 170.1, 160.6, 150.1, 144.2, 138.7, 135.8, 131.9, 127.8,

127.4, 127.1, 126.2, 124.9, 123.1, 120.6, 119.8, 118.2, 47.5,
22.3; EI-MS: m/z 309 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(4-methylphenyl)-
methyl)]acetamide (4c): White solid; IR (KBr, νmax, cm–1):
3415, 3308, 3068, 1631, 1601, 1570, 1519, 1469, 1390, 1209,
1158, 1063, 945, 884, 789, 744, 714; 1H NMR (300 MHz,
DMSO-d6): δ 9.87 (s, 1H), 8.30 (d, J = 8.1 Hz, 1H), 7.84
(br.d, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.70 (d, J = 8.7 Hz, 1H),
7.28 (m, 1H), 7.20 (t, J = 7.2 Hz, 1H), 7.18 (d, J = 8.7 Hz,
1H), 7.05-7.02 (m, 5H), 2.21 (s, 3H), 1.94 (s, 3H); 13C NMR
(75 MHz, DMSO-d6): δ 169.4, 151.5, 142.4, 139.2, 134.1,
132.7, 128.4, 128.2, 127.9, 126.5, 125.2, 122.4, 121.7, 119.8,
118.9, 47.2, 22.6, 21.2; EI-MS: m/z 292 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(4-nitrophenyl)-
methyl)]acetamide (4d): Pale yellow solid; IR (KBr, νmax, cm–1):
3389, 3299, 2594, 1645, 1602, 1518, 1438, 1064, 822, 729,
439; 1H NMR (300 MHz, DMSO-d6): δ 9.89 (s, 1H), 8.51 (d,
J = 8.1 Hz, 1H), 8.02 (m, 2H), 7.81 (d, J = 7.2 Hz, 1H), 7.78
(t, J = 9.0 Hz, 2H), 7.54-7.51 (m, 2H), 7.33 (t, J = 7.2 Hz and
5.4 Hz, 1H), 7.24 (t, J = 7.2 Hz and 4.8 Hz, 1H), 7.19 (d, J =
8.4 Hz, 1H), 7.13 (d, J = 7.8 Hz, 1H), 2.12 (s, 3H); 13C NMR
(75 MHz, DMSO-d6): δ 169.4, 150.2, 146.3, 144.1, 129.7,
129.4, 129.1, 128.6, 128.1, 126.2, 123.3, 121.2, 119.8, 118.8,
117.4, 47.4, 21.9 ppm; EI-MS (m/z): 337 (M+ +1).

N-[(2-Hydroxynaphthalen-1-yl)-(4-chlorophenyl)-
methyl)]acetamide (4e): White solid; IR (KBr, νmax, cm–1):
3392, 2959, 2689, 2604, 1630, 1561, 2520, 1488, 1432, 1365,
1333, 1271, 1234, 1168, 1083, 817, 742, 580, 490; 1H NMR
(300 MHz, DMSO-d6): δ 9.94 (s, 1H), 8.47 (d, J = 8.7 Hz, 1H),
7.71 (m, 3H), 7.35 (t, J = 7.8 Hz and 5.4 Hz, 1H), 7.21 (m,
3H), 7.19 (d, J = 8.7 Hz, 2H), 7.11 (d, J = 8.7 Hz, 2H), 7.05
(d, J = 8.1 Hz, 2H), 1.97 (s, 3H); 13C NMR (75 MHz, DMSO-d6):
δ 169.2, 152.5, 143.8, 134.4, 130.9, 130.1, 129.4, 129.1, 128.4,
128.1, 126.1, 124.2, 120.5, 119.7, 47.1, 20.8; EI-MS (m/z)
326 (M+ +1).

N-[(2-Hydroxynaphthalen-1-yl)-(4-methoxyphenyl)-
methyl)]acetamide (4f): White solid; IR (KBr, νmax, cm–1):
3390, 3060, 3002, 2955, 2832, 2780, 2704, 2611, 1620, 1588,
1510, 1421, 1370, 1329, 1260, 1168, 1080, 1054, 1034, 978,
878, 818, 807, 746; 1H NMR (300 MHz, DMSO-d6): δ 9.94
(s, 1H), 8.42 (d, 1H), 7.81-7.79 (m, 4H), 7.31-7.24 (m, 6H),
5.38 (s, 1H), 2.49 (s, 3H), 2.1 (s, 3H); 13C NMR (75 MHz,
DMSO-d6): δ 161.4, 154.4, 138.5, 134.5, 130.2, 128.5, 128.3,
126.1, 124.1, 123.4, 119.2, 114.8, 114.2, 55.7, 45.2; EI-MS:
m/z 322 (M+ +1).

N-[(2-Hydroxynaphthalen-1-yl)-(2,4-chlorophenyl)-
methyl)]acetamide (4g): White solid; IR (KBr, νmax, cm–1):
3394, 2960, 2689, 2606, 1629, 1562, 2518, 1489, 1430, 1361,
1329, 1269, 1238, 1165, 1081, 815, 741, 588, 492; 1H NMR
(300 MHz, DMSO-d6): δ 9.92 (s, 1H), 8.46 (d, J = 8.7 Hz, 1H),
7.71 (m, 2H), 7.34 (t, J = 7.6 Hz and 4.2Hz, 1H), 7.21 (m,
3H), 7.19 (d, J = 8.7 Hz, 1H), 7.11 (d, J = 8.7 Hz, 2H), 7.05
(d, J = 8.1 Hz, 1H), 1.97 (s, 3H); 13C NMR (75 MHz, DMSO-d6):
δ 169.2, 152.4, 143.5, 134.2, 130.9, 130.1, 129.4, 129.1, 128.4,
128.1, 126.1, 124.2, 120.5, 119.7, 47.2, 21.2; EI-MS: m/z 360
(M+ +1).

N-[(2-Hydroxynaphthalen-1-yl)-(4-methylphenyl)-
methyl)]urea (4h): White solid; IR (KBr, νmax, cm–1): 3285,
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3165, 3068, 2921, 1630, 1592, 1394, 810, 789, 744; 1H NMR
(300 MHz, DMSO-d6): δ 9.58 (s, 1H), 8.71 (s, 1H), 7.88-7.23
(m, 8H), 6.13 (br, 2H), 2.19 (s, 3H); 13C NMR (75 MHz, DMSO-
d6): δ 164.1, 152.2, 142.2, 137.5, 133.1, 132.7, 128.3, 127.9,
127.6, 126.5, 125.2, 122.4, 121.7, 119.8, 118.9, 51.2, 24.2
ppm; EI-MS: m/z 326 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(3-nitrophenyl)-
methyl)]urea (4i): White solid; IR (KBr, νmax, cm–1): 3330,
3169, 3038, 2921, 1691, 1595, 1394, 807, 743; 1H NMR (300
MHz, DMSO-d6): δ 9.11 (s, 1H), 8.64 (s, 1H), 8.21-7.63 (m,
7H), 7.63-7.27 (m, 3H), 6.87 (s, 2H), 6.29 (s, 1H); 13C NMR
(75 MHz, DMSO-d6): δ 163.2, 154.2, 148.6, 143.5, 135.4,
135.1, 131.2, 127.8, 127.5, 127.2, 125.2, 124.7, 118.8, 50.8;
EI-MS: m/z 337 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(4-nitrophenyl)-
methyl)]urea (4j): Pale yellow solid; IR (KBr, νmax, cm–1):
3330, 3169, 3038, 2921, 1691, 1595, 1394, 807, 743; 1H NMR
(300 MHz, DMSO-d6): δ 9.10 (s, 1H), 8.34-7.93 (m, 9H), 7.45-
7.22 (m, 2H), 6.78 (s, 2H), 6.31 (s, 1H) ppm; 13C NMR (75 MHz,
DMSO-d6): δ 164.2, 154.5, 147.9, 143.4, 135.4, 135.1, 131.2,
127.6, 127.3, 127.1, 125.4, 124.8, 118.7, 50.7; EI-MS: m/z
337 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(4-methoxy phenyl)-
methyl)]urea (4k): White solid; IR (KBr, νmax, cm–1): 3485,
3365, 3270, 3057, 2922, 1638, 1585, 1392, 809, 790, 745; 1H
NMR (300 MHz, DMSO-d6): δ 9.89 (s, 1H), 8.75 (s, 1H), 7.88-
7.46 (m, 6H), 7.32-7.27 (m, 4H), 7.01 (s, 1H), 6.02 (br, 2H),
3.66 (s, 3H); 13C NMR (75 MHz, DMSO-d6): δ 163.3, 153.2,
142.4, 135.7, 133.4, 129.3, 128.7, 128.3, 126.2, 123.2, 122.2,
118.5, 53.2; EI-MS: m/z 322 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(3-bromophenyl)-
methyl)]benzamide (4l): White solid; IR (KBr, νmax, cm–1):
3396, 3202, 3064, 1629, 1580, 1435, 1345, 1270, 1190, 1047,
805, 731, 637, 521; 1H NMR (300 MHz, DMSO-d6): δ 10.22
(s, 1H), 9.03 (d, J = 8.7 Hz, 1H), 8.17 (d, J = 8.7 Hz, 1H), 8.12-
7.79 (m, 4H), 7.58-7.49 (m, 5H), 7.32-7.36 (m, 4H), 7.21-7.16
(m, 2H) ppm; 13C NMR (75 MHz, DMSO-d6): δ 165.8, 153.4,
145.6, 134.7, 133.1, 131.8, 130.3, 129.7, 129.5, 129.3, 128.8,
128.5, 128.3, 127.6, 127.3, 127.1, 123.2, 122.1, 118.5, 117.6,
51.3; EI-MS (m/z): 432 (M+).

N-[(2-Hydroxynaphthalen-1-yl)-(4-nitrophenyl)-
methyl)]benzamide (4m): White solid; IR (KBr, νmax, cm–1):
3411, 3215, 3044, 1650, 1540, 1446, 1352, 1057, 855, 749;
1H NMR (300 MHz, DMSO-d6): δ 10.08 (s, 1H), 8.91 (s, 1H),
8.21 (d, J = 8.7 Hz, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.94 (d, J =
7.5 Hz, 2H), 7.79 (d, J = 7.8 Hz, 1H), 7.71 (d, J = 9.0 Hz,
1H), 7.56-7.49 (m, 7H), 7.58-7.49 (m, 5H), 7.39 (t, J = 7.8 Hz
and 7.2 Hz, 4H), 6.71 (m, 1H); 13C NMR (75 MHz, DMSO-d6):
δ 167.3, 153.2, 148.9, 134.1, 133.3, 130.3, 129.6, 129.3, 129.1,
127.8, 122.2, 122.1, 119.6, 117.7, 50.8; EI-MS: m/z 398 (M+ +1).

N-[(2-Hydroxynaphthalen-1-yl)-(4-chlorophenyl)-
methyl)]benzamide (4n): White solid; IR (KBr, νmax, cm–1):
3419, 3277, 2053, 1628, 1529, 1445, 1270, 1051, 825, 730;
1H NMR (300 MHz, DMSO-d6): δ 10.09 (s, 1H), 8.89 (s, 1H),
8.23 (d, J = 8.1 Hz, 1H), 8.16 (d, J = 8.4 Hz, 2H), 7.84-7.75
(m, 4H), 7.61-7.27 (m, 10H), 6.24 (s, 1H) ppm; 13C NMR (75
MHz, DMSO-d6): 167.1, 154.3, 136.4, 132.5, 131.6, 129.5,
128.6, 128.1, 126.8, 123.2, 122.5, 119.4, 118.2, 49.6 ppm;
EI-MS (m/z) 387 ((M+).

N-[(2-Hydroxynaphthalen-1-yl)-(4-methylphenyl)-
methyl)]benzamide (4n): White solid; IR (KBr, νmax, cm–1):
3415, 3012, 2825, 1628, 1535, 1480, 1356, 819, 715; 1H NMR
(300 MHz, DMSO-d6): δ 10.12 (s, 1H), 8.95 (s, 1H), 7.88-7.79
(m, 4H), 7.56-7.19 (m, 9H), 7.04 (d, J = 8.1 Hz, 2H), 6.08 (s,
1H), 2.21 (s, 3H); 13C NMR (75 MHz, DMSO-d6): δ 167.6, 154.5,
143.8, 139.4, 134.8, 133.1, 129.5, 128.8, 128.2, 126.5, 125.2,
123.5, 122.7, 119.5, 118.1, 48.7, 20.1 ppm; EI-MS: m/z 367
(M+).

R E S U L T S A N D   D I S C U S S I O N

The optimization of amount of Envirocat EPZ-10 catalyst
was carried out for model reaction of 2-naphthol (1 mmol),
benzaldehyde (1 mmol) and acetamide (1.2 mmol) under solvent
free conditions and microwave irradiation. The results of the
study are summarized in Table-1. It is noteworthy that the
reaction did not proceed in the absence of catalyst that signifies
the decisive role of catalyst. Excellent yield of the desired product
was observed when 50 mg of Envirocat EPZ-10 was employed.
Low yields of the desired product were obtained for catalyst
loading less than 50 mg while no significant increase in yields
was observed when catalyst loading was employed beyond
50 mg. Thus, 50 mg of Envirocat EPZ-10 was chosen as the
optimal quantity (Table-1, entry 6). The formation of desired
product was confirmed by NMR, IR and mass spectroscopic
techniques.

TABLE-1 
OPTIMIZATION OF REACTION CONDITIONS FOR THE 

SYNTHESIS OF 1-AMIDOALKYL-2-NAPHTHOLSa 

OH

NHR'

O

CHO

+
EPZ10

MW

OH

+ CH3CONH2 R

(2a) (3a) (4a)(1)  

Catalyst (mg) Reaction time (min) Yieldb (%) 
0 25 No reaction 
10 25 45 
20 20 54 
30 18 58 
40 14 81 
50 10 96 
60 10 96 
70 10 96 
80 9 97 
100 9 97 

aReaction conditions: 2-Naphthol (1 mmol), benzaldehyde (1 mmol), 
acetamide (1.2 mmol) and EP10 in MW at 120 °C, bIsolated yields. 

 
To prove the generality of method, the scope of this

reaction for the synthesis of diversely substituted 1-amidoalkyl-
2-naphthols was further explored. A variety of aromatic alde-
hydes with electron-donating as well as electron-withdrawing
groups underwent smooth transformation to provide desired
1-amidoalkyl-2-naphthol derivatives in good to excellent yields
(83-95%) in short reaction time (10-25 min) (Table-2). In all
cases, 1-amidoalkyl-2-naphthols were the sole products and
no byproduct was observed.

The plausible mechanism for the Envirocat EPZ-10 assisted
synthesis of 1-amidoalkyl-2-naphthols is shown in Scheme-I.
A condensation between 2-naphthol and corresponding aromatic
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TABLE-2 
SYNTHESIS OF THE LIBRARY OF 1-AMIDOALKYL-2-NAPHTHOLSa 

OH

NHR'

O

R

CHO

+
EPZ10

MW

OH

+ R'CONH2 R

2(a-o) 3(a/b/c) 4(a-o)(1)  

Entry RCHO (2) RCONH2 (3) Product (4) Time (min)/Yield (%)b m.p.d, obs. [lit] °C 

a 

CHO

 

CH3CONH2 

OH

NH

O

 

10/(96-90)c 244-246  
(241-243) [30] 

b 

CHO

F  

CH3CONH2 

OH

NH

O

F  

9/93 230-232 
 (209-210) [30] 

c 

CHO

 

CH3CONH2 

OH

NH

O

 

10/90 216-218 
 (222-223) [31] 

d 

CHO

NO2  

CH3CONH2 

OH

NH

O

O2N  

9/95 246-248 
 (248-250) [32] 

e 

CHO

Cl  

CH3CONH2 

OH

NH

O

Cl  

9/93 222-224 
 (224-227) [30] 

f 

CHO

OMe 

CH3CONH2 

OH

NH

O

MeO  

15/85 186-188 
 (184-186) [30] 

g 

CHO

Cl

Cl

 

CH3CONH2 

OH

NH

O

Cl

Cl

 

9/91 202-204 
 (198-199) [30] 

h 

CHO

 

NH2CONH2 

OH

NHNH2

O

 

19/90 218-220 
(222-223) [32] 

i 

CHO

NO2 

NH2CONH2 

OH

NH
NH2

O

O2N

 

15/92 178-180 
 (179-180) [30] 

 

[30]

[30]

[31]

[32]

[30]

[30]

[30]

[32]

[30]
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j 

CHO

NO2  

NH2CONH2 

OH

NHNH2

O

O2N  

12/93 201-203 
 (200-202) [33] 

k 

CHO

OMe 

NH2CONH2 

OH

NHNH2

O

MeO  

20/85 184-186 
 (182-184) [34] 

l 

CHO

Br  

PhCONH2 

OH

NHPh

O

Br

 

18/80 224-226  
(228-230) [31] 

m 

CHO

NO2  

PhCONH2 

OH

NHPh

O

O2N  

15/86 230-232 (228) [35] 

n 

CHO

Cl  

PhCONH2 

OH

NHPh

O

Cl  

16/84 174-176  
(177-178) [31] 

o 

CHO

 

PhCONH2 

OH

NHPh

O

 

20/75 178-180  
(175-177) [36] 

aReaction conditions: 2-Naphthol (1 mmol), aldehyde (1 mmol), urea/benzamide/acetamide (1.2 mmol) and EP10 (50 mg) were heated in MW at 120 °C, 
bYields refer to the pure isolated products. cYields after recovery of the catalyst 5 times, dLiterature value in parenthesis. 

 

H

O OH O
H

OH

O

EPV10

–H2O

EPV10

o-QMs

EPV10

Free catalyst

OH

HN R1

O

Product

O

EPV10

o-QMs

O

H2N R
1

Scheme-I: Plausible mechanism for the formation of 1-amidoalkyl-2-naphthols

[33]

[34]

[31]

[35]

[31]

[36]
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aldehydes in the presence of Envirocat EPZ-10 catalyst generates
ortho-quinonemethides (o-QMs) which subsequently undergo
aza-Michael type conjugate addition at the β carbon of α,β-
unsaturated carbonyl system by amino group in urea/benzamide
/acetamide leading to the formation of desired 1-amidoalkyl-
2-naphthols.

From the environmental and economical point of view,
recyclability of the heterogeneous catalyst is also an important
aspect. Hence, The recyclability study of Envirocat EPZ-10
was also focused for the model reaction. Gratifyingly, it was
observed that the catalyst can be reused for six consecutive
reactions after washing with CHCl3 and drying in oven at 100 ºC
(Fig. 1).

100

80

60

40

20

0

P
ro

du
ct

 (
%

)

1 2 3 4 5 6

Reaction run

96 
92 91 88 89 87

Fig. 1. Recyclability of Envirocat EPZ-10 for synthesis of N-((2-
hydroxynaphthalen-1-yl)(4-phenyl)methyl)acetamide (4a)

To verify the significance of the developed method, the
present method was compared with reported methods for the
synthesis of N-[phenyl-(2-hydroxynapthalen-1-yl)methyl]-
acetamide. Table-3 demonstrates that present method stands
more efficient with respect to reaction temperature, catalyst
load, reaction time and yield than previously reported methods.

Conclusion

Envirocat EPZ-10 catalyzed solvent-free method was
developed for the synthesis of 1-amidoalkyl-2-naphthols
(AANs) by the reaction of aldehyde, 2-naphthol and amide/
urea under microwave irradiation. The key advantages of the
developed methods are use of Envirocat EPZ-10 as an eco-
friendly, reusable and heterogeneous catalysts, solvent-free
reaction conditions, shorter reaction times and easy isolation
of product and use of microwaves as an efficient energy source.
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