Main Article Content

Abstract

An efficient approach for the formation of biologically important indolo[2,1-b]quinazoline-6,12-diones in good to moderate yields has been accomplished from 2-haloacetophenones and anthranilamides employing I2/DMSO/CuI under aerobic conditions. This tandem process is believed to proceed via iodination of 2-haloacetophenone followed by Kornblum oxidation and copper-catalyzed intramolecular N-arylation. This method adopts five reactions such as α-halogenation, oxidation, condensation, aromatization and heteroaryl coupling in a single step which makes it as an attractive and useful for the synthesis of indolo[2,1-b]quinazoline-6,12-diones.

Keywords

Indolo[2 1-b]quinazoline-6 12-diones N-arylation Oxidative cyclization Kornblum oxidation Quinazolinone.

Article Details

How to Cite
Sridevi, B. (2021). One-Pot Synthesis of Indolo[2,1-b]quinazoline-6,12-diones under Aerobic Conditions. Asian Journal of Organic & Medicinal Chemistry, 6(3), 154–160. https://doi.org/10.14233/ajomc.2021.AJOMC-P329

References

  1. C.W. Jao, W.-C. Lin, Y.-T. Wu and P.L. Wu, Isolation, Structure Elucidation and Synthesis of Cytotoxic Tryptanthrin Analogues from Phaius mishmensis, J. Nat. Prod., 71, 1275 (2008); https://doi.org/10.1021/np800064w
  2. L. Zhang, X.-M. Peng, G.L.V. Damu, R.-X. Geng and C.-H. Zhou, Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry, Med. Res. Rev., 34, 340 (2014); https://doi.org/10.1002/med.21290
  3. J.F. González, I. Ortín, E. de la Cuesta and J.C. Menéndez, Privileged Scaffolds in Synthesis: 2,5-Piperazinediones as Templates for the Preparation of Structurally Diverse Heterocycles, Chem. Soc. Rev., 41, 6902 (2012); https://doi.org/10.1039/c2cs35158g
  4. U.A. Kshirsagar, Recent Developments in the Chemistry of Quinazolinone Alkaloids, Org. Biomol. Chem., 13, 9336 (2015); https://doi.org/10.1039/C5OB01379H
  5. M.M. Kamel, W.A. Zaghary, R.I. Al-Wabli and M.M. Anwar, Egypt. Pharm. J., 15, 98 (2016); https://doi.org/10.4103/1687-4315.197580
  6. F.-D. Kong, S.-L. Zhang, S.-Q. Zhou, Q.-Y. Ma, Q.-Y. Xie, J.-P. Chen, J.-H. Li, L.-M. Zhou, J.-Z. Yuan, Z. Hu, H.-F. Dai, X.-L. Huang and Y.-X. Zhao, J. Nat. Prod., 82, 3456 (2019); https://doi.org/10.1021/acs.jnatprod.9b00845
  7. S. Sinha and M. Srivastava, Biologically Active Quinazolones, Prog. Drug Res., 43, 143 (1994); https://doi.org/10.1007/978-3-0348-7156-3_5
  8. H. Xie, Y. Zhang, S. Zhang, X. Chen and W. Wang, Bifunctional Cinchona Alkaloid Thiourea Catalyzed Highly Efficient, Enantio-selective Aza-Henry Reaction of Cyclic Trifluoromethyl Ketimines: Synthesis of Anti-HIV Drug DPC 083, Angew. Chem. Int. Ed., 50, 11773 (2011); https://doi.org/10.1002/anie.201105970
  9. L. Li, J. Ge, H. Wu, Q.-H. Xu and S.Q. Yao, Organelle-Specific Detection of Phosphatase Activities with Two-Photon Fluorogenic Probes in Cells and Tissues, J. Am. Chem. Soc., 134, 12157 (2012); https://doi.org/10.1021/ja3036256
  10. A.K. Bhattacharjee, M.G. Hartell, D.A. Nichols, R.P. Hicks, B. Stanton, J.E. van Hamont and W.K. Milhous, Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo[2,1-b]quinazoline-6,12-dione Derivatives in Relation to Antileishmanial Activity using Quantum Chemical, Cyclic Voltammetry and 3-D-QSAR Catalyst Procedures, Eur. J. Med. Chem., 39, 59 (2004); https://doi.org/10.1016/j.ejmech.2003.10.004
  11. J. Scovill, E. Blank, M. Konnick, E. Nenortas and T. Shapiro, Antitrypanosomal Activities of Tryptanthrins, Antimicrob. Agents Chemother., 46, 882 (2002); https://doi.org/10.1128/AAC.46.3.882-883.2002
  12. B. Krivogorsky, P. Grundt, R. Yolken and L. Jones-Brando, Inhibition of Toxoplasma gondii by Indirubin and Tryptanthrin Analogs, Antimicrob. Agents Chemother., 52, 4466 (2008); https://doi.org/10.1128/AAC.00903-08
  13. A.K. Bhattacharjee, D.J. Skanchy, B. Jennings, T.H. Hudson, J.J. Brendle and K.A. Werbovetz, Structure-Activity Relationship Study of Antimalarial Indolo [2,1-b]quinazoline-6,12-diones (Tryptanthrins). Three dimensional Pharmacophore Modeling and Identification of New Antimalarial Candidates, Bioorg. Med. Chem., 10, 1979 (2002); https://doi.org/10.1016/S0968-0896(02)00013-5
  14. V.M. Sharma, P. Prasanna, K.V. Adi Seshu, B. Renuka, C.V. Laxman Rao, G. Sunil Kumar, C.P. Narasimhulu, P. Aravind Babu, R.C. Puranik, D. Subramanyam, A. Venkateswarlu, S. Rajagopal, K.B.S. Kumar, C.S. Rao, N.V.S.R. Mamidi, D.S. Deevi, R. Ajaykumar and R. Rajagopalan, Bioorg. Med. Chem. Lett., 12, 2303 (2002); https://doi.org/10.1016/S0960-894X(02)00431-6
  15. T. Motoki, Y. Takami, Y. Yagi, A. Tai, I. Yamamoto and E. Gohda, Inhibition of Hepatocyte Growth Factor Induction in Human Dermal Fibroblasts by Tryptanthrin, Biol. Pharm. Bull., 28, 260 (2005); https://doi.org/10.1248/bpb.28.260
  16. R.P. Hicks, D.A. Nichols, C.A. DiTusa, D.J. Sullivan, M.G. Hartell, B.W. Koser and A.K. Bhattacharjee, Evaluation of 4-Azaindolo[2,1-b]-quinazoline–6,12–diones’ Interaction with Hemin and Hemozoin: A Spectroscopic, X-ray Crystallographic and Molecular Modeling Study, Internet Electron. J. Mol. Des., 4, 751 (2005).
  17. K. Iwaki, E. Ohashi, N. Arai, K. Kohno, S. Ushio, M. Taniguchi and S. Fukuda, Tryptanthrin Inhibits Th2 Development and IgE-Mediated Degranulation and IL-4 Production by Rat Basophilic Leukemia RBL-2H3 Cells, J. Ethnopharmacol., 134, 450 (2011); https://doi.org/10.1016/j.jep.2010.12.041
  18. M. Sarangapani and V.M. Reddy, Phramacological Evaluation of 1-(N,N-Disubstituted aminomethyl)-3-imino-(2-phenyl-3,4-dihydro-4-oxo-quinazolin-3-yl)indolin-2-ones, Indian J. Pharm. Sci., 58, 147 (1996).
  19. A. Kumar, V.D. Tripathi and P. Kumar, b-Cyclodextrin Catalysed Synthesis of Tryptanthrin in Water, Green Chem., 13, 51 (2011); https://doi.org/10.1039/C0GC00523A
  20. U.A. Kshirsagar and N.P. Argade, Copper-Catalyzed Intramolecular N-Arylation of Quinazolinones: Facile Convergent Approach to (-)-Circumdatins H and J, Org. Lett., 12, 3716 (2010); https://doi.org/10.1021/ol101597p
  21. K.C. Jahng, S.I. Kim, D.H. Kim, C.S. Seo, J.K. Son, S.H. Lee, E.S. Lee and Y.D. Jahng, One-Pot Synthesis of Simple Alkaloids: 2,3-Polymethylene-4(3H)-quinazolinones, Luotonin A, Tryptanthrin, and Rutaecarpine, Chem. Pharm. Bull. (Tokyo), 56, 607 (2008); https://doi.org/10.1248/cpb.56.607
  22. J.L. Liang, S.-E. Park, Y. Kwon and Y. Jahng, Synthesis of Benzo-annulated Tryptanthrins and their Biological Properties, Bioorg. Med. Chem., 20, 4962 (2012); https://doi.org/10.1016/j.bmc.2012.06.034
  23. F. Diederich and P.J. Stang, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: New York (1998).
  24. C.J. Li, Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res., 42, 335 (2009); https://doi.org/10.1021/ar800164n
  25. J.A. Labinger and J.E. Bercaw, Understanding and Exploiting C–H Bond Activation, Nature, 417, 507 (2002); https://doi.org/10.1038/417507a
  26. C. He, S. Guo, J. Ke, J. Hao, H. Xu, H.Y. Chen and A.W. Lei, Silver-Mediated Oxidative C–H/C–H Functionalization: A Strategy to Construct Polysubstituted Furans, J. Am. Chem. Soc., 134, 5766 (2012); https://doi.org/10.1021/ja301153k
  27. F. Jia and Z.P. Li, Iron-Catalyzed/Mediated Oxidative Transformation of C–H Bonds, Org. Chem. Front., 1, 194 (2014); https://doi.org/10.1039/C3QO00087G
  28. Y.H. Yan, Y.H. Zhang, C.T. Feng, Z.G. Zha and Z.Y. Wang, Selective Iodine-Catalyzed Intermolecular Oxidative Amination of C(sp3)-H Bonds with ortho-Carbonyl-Substituted Anilines to Give Quinazoline, Angew. Chem. Int. Ed., 51, 8077 (2012); https://doi.org/10.1002/anie.201203880
  29. Z.J. Liu, J. Zhang, S.L. Chen, E.B. Shi, Y. Xu and X.B. Wan, Cross Coupling of Acyl and Aminyl Radicals: Direct Synthesis of Amides Catalyzed by Bu4NI with TBHP as an Oxidant, Angew. Chem., Int. Ed., 51, 3231 (2012); https://doi.org/10.1002/anie.201108763
  30. F. Collet, C. Lescot and P. Dauban, Catalytic C–H Amination: The Stereoselectivity Issue, Chem. Soc. Rev., 40, 1926 (2011); https://doi.org/10.1039/c0cs00095g
  31. S.H. Cho, J.Y. Kim, J. Kwak and S. Chang, Recent Advances in the Transition Metal-Catalyzed Twofold Oxidative C–H Bond Activation Strategy for C–C and C–N Bond Formation, Chem. Soc. Rev., 40, 5068 (2011); https://doi.org/10.1039/c1cs15082k
  32. W.J. Yoo and C.J. Li, Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts, J. Am. Chem. Soc., 128, 13064 (2006); https://doi.org/10.1021/ja064315b
  33. R. Vanjari and K.N. Singh, Utilization of Methylarenes as Versatile Building Blocks in Organic Synthesis, Chem. Soc. Rev., 44, 8062 (2015); https://doi.org/10.1039/C5CS00003C
  34. D. Zhao, T. Wang and J.-X. Li, Metal-free Oxidative Synthesis of Quinazolinones via Dual Amination of sp3 C–H Bonds, Chem. Commun., 50, 6471 (2014); https://doi.org/10.1039/C4CC02648A
  35. S.E. Allen, R.R. Walvoord, R. Padilla-Salinas and M.C. Kozlowski, Aerobic Copper-Catalyzed Organic Reactions, Chem. Rev., 113, 6234 (2013); https://doi.org/10.1021/cr300527g
  36. J. Kim, H. Kim and S. Chang, Copper-Mediated Selective Cyanation of Indoles and 2-Phenylpyridines with Ammonium Iodide and DMF, Org. Lett., 14, 3924 (2012); https://doi.org/10.1021/ol301674m
  37. B. Nachtsheim and P. Finkbeiner, Synthesis, 45, 979 (2013); https://doi.org/10.1055/s-0032-1318330
  38. H. Huang, X. Ji, W. Wu and H. Jiang, Practical Synthesis of Polysubstituted Imidazoles via Iodine- Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines, Adv. Synth. Catal., 355, 170 (2013); https://doi.org/10.1002/adsc.201200582
  39. W. Xu, U. Kloeckner and B.J. Nachtsheim, Direct Synthesis of 2,5-Disubstituted Oxazoles through an Iodine-Catalyzed Decarboxylative Domino Reaction, J. Org. Chem., 78, 6065 (2013); https://doi.org/10.1021/jo400753n
  40. W.C. Gao, R.L. Wang and C. Zhang, Practical Oxazole Synthesis Mediated by Iodine from a-Bromoketones and Benzylamine Derivatives, Org. Biomol. Chem., 11, 7123 (2013); https://doi.org/10.1039/c3ob41566j