Main Article Content
Abstract
An efficient approach for the formation of biologically important indolo[2,1-b]quinazoline-6,12-diones in good to moderate yields has been accomplished from 2-haloacetophenones and anthranilamides employing I2/DMSO/CuI under aerobic conditions. This tandem process is believed to proceed via iodination of 2-haloacetophenone followed by Kornblum oxidation and copper-catalyzed intramolecular N-arylation. This method adopts five reactions such as α-halogenation, oxidation, condensation, aromatization and heteroaryl coupling in a single step which makes it as an attractive and useful for the synthesis of indolo[2,1-b]quinazoline-6,12-diones.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- C.W. Jao, W.-C. Lin, Y.-T. Wu and P.L. Wu, Isolation, Structure Elucidation and Synthesis of Cytotoxic Tryptanthrin Analogues from Phaius mishmensis, J. Nat. Prod., 71, 1275 (2008); https://doi.org/10.1021/np800064w
- L. Zhang, X.-M. Peng, G.L.V. Damu, R.-X. Geng and C.-H. Zhou, Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry, Med. Res. Rev., 34, 340 (2014); https://doi.org/10.1002/med.21290
- J.F. González, I. Ortín, E. de la Cuesta and J.C. Menéndez, Privileged Scaffolds in Synthesis: 2,5-Piperazinediones as Templates for the Preparation of Structurally Diverse Heterocycles, Chem. Soc. Rev., 41, 6902 (2012); https://doi.org/10.1039/c2cs35158g
- U.A. Kshirsagar, Recent Developments in the Chemistry of Quinazolinone Alkaloids, Org. Biomol. Chem., 13, 9336 (2015); https://doi.org/10.1039/C5OB01379H
- M.M. Kamel, W.A. Zaghary, R.I. Al-Wabli and M.M. Anwar, Egypt. Pharm. J., 15, 98 (2016); https://doi.org/10.4103/1687-4315.197580
- F.-D. Kong, S.-L. Zhang, S.-Q. Zhou, Q.-Y. Ma, Q.-Y. Xie, J.-P. Chen, J.-H. Li, L.-M. Zhou, J.-Z. Yuan, Z. Hu, H.-F. Dai, X.-L. Huang and Y.-X. Zhao, J. Nat. Prod., 82, 3456 (2019); https://doi.org/10.1021/acs.jnatprod.9b00845
- S. Sinha and M. Srivastava, Biologically Active Quinazolones, Prog. Drug Res., 43, 143 (1994); https://doi.org/10.1007/978-3-0348-7156-3_5
- H. Xie, Y. Zhang, S. Zhang, X. Chen and W. Wang, Bifunctional Cinchona Alkaloid Thiourea Catalyzed Highly Efficient, Enantio-selective Aza-Henry Reaction of Cyclic Trifluoromethyl Ketimines: Synthesis of Anti-HIV Drug DPC 083, Angew. Chem. Int. Ed., 50, 11773 (2011); https://doi.org/10.1002/anie.201105970
- L. Li, J. Ge, H. Wu, Q.-H. Xu and S.Q. Yao, Organelle-Specific Detection of Phosphatase Activities with Two-Photon Fluorogenic Probes in Cells and Tissues, J. Am. Chem. Soc., 134, 12157 (2012); https://doi.org/10.1021/ja3036256
- A.K. Bhattacharjee, M.G. Hartell, D.A. Nichols, R.P. Hicks, B. Stanton, J.E. van Hamont and W.K. Milhous, Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo[2,1-b]quinazoline-6,12-dione Derivatives in Relation to Antileishmanial Activity using Quantum Chemical, Cyclic Voltammetry and 3-D-QSAR Catalyst Procedures, Eur. J. Med. Chem., 39, 59 (2004); https://doi.org/10.1016/j.ejmech.2003.10.004
- J. Scovill, E. Blank, M. Konnick, E. Nenortas and T. Shapiro, Antitrypanosomal Activities of Tryptanthrins, Antimicrob. Agents Chemother., 46, 882 (2002); https://doi.org/10.1128/AAC.46.3.882-883.2002
- B. Krivogorsky, P. Grundt, R. Yolken and L. Jones-Brando, Inhibition of Toxoplasma gondii by Indirubin and Tryptanthrin Analogs, Antimicrob. Agents Chemother., 52, 4466 (2008); https://doi.org/10.1128/AAC.00903-08
- A.K. Bhattacharjee, D.J. Skanchy, B. Jennings, T.H. Hudson, J.J. Brendle and K.A. Werbovetz, Structure-Activity Relationship Study of Antimalarial Indolo [2,1-b]quinazoline-6,12-diones (Tryptanthrins). Three dimensional Pharmacophore Modeling and Identification of New Antimalarial Candidates, Bioorg. Med. Chem., 10, 1979 (2002); https://doi.org/10.1016/S0968-0896(02)00013-5
- V.M. Sharma, P. Prasanna, K.V. Adi Seshu, B. Renuka, C.V. Laxman Rao, G. Sunil Kumar, C.P. Narasimhulu, P. Aravind Babu, R.C. Puranik, D. Subramanyam, A. Venkateswarlu, S. Rajagopal, K.B.S. Kumar, C.S. Rao, N.V.S.R. Mamidi, D.S. Deevi, R. Ajaykumar and R. Rajagopalan, Bioorg. Med. Chem. Lett., 12, 2303 (2002); https://doi.org/10.1016/S0960-894X(02)00431-6
- T. Motoki, Y. Takami, Y. Yagi, A. Tai, I. Yamamoto and E. Gohda, Inhibition of Hepatocyte Growth Factor Induction in Human Dermal Fibroblasts by Tryptanthrin, Biol. Pharm. Bull., 28, 260 (2005); https://doi.org/10.1248/bpb.28.260
- R.P. Hicks, D.A. Nichols, C.A. DiTusa, D.J. Sullivan, M.G. Hartell, B.W. Koser and A.K. Bhattacharjee, Evaluation of 4-Azaindolo[2,1-b]-quinazoline–6,12–diones’ Interaction with Hemin and Hemozoin: A Spectroscopic, X-ray Crystallographic and Molecular Modeling Study, Internet Electron. J. Mol. Des., 4, 751 (2005).
- K. Iwaki, E. Ohashi, N. Arai, K. Kohno, S. Ushio, M. Taniguchi and S. Fukuda, Tryptanthrin Inhibits Th2 Development and IgE-Mediated Degranulation and IL-4 Production by Rat Basophilic Leukemia RBL-2H3 Cells, J. Ethnopharmacol., 134, 450 (2011); https://doi.org/10.1016/j.jep.2010.12.041
- M. Sarangapani and V.M. Reddy, Phramacological Evaluation of 1-(N,N-Disubstituted aminomethyl)-3-imino-(2-phenyl-3,4-dihydro-4-oxo-quinazolin-3-yl)indolin-2-ones, Indian J. Pharm. Sci., 58, 147 (1996).
- A. Kumar, V.D. Tripathi and P. Kumar, b-Cyclodextrin Catalysed Synthesis of Tryptanthrin in Water, Green Chem., 13, 51 (2011); https://doi.org/10.1039/C0GC00523A
- U.A. Kshirsagar and N.P. Argade, Copper-Catalyzed Intramolecular N-Arylation of Quinazolinones: Facile Convergent Approach to (-)-Circumdatins H and J, Org. Lett., 12, 3716 (2010); https://doi.org/10.1021/ol101597p
- K.C. Jahng, S.I. Kim, D.H. Kim, C.S. Seo, J.K. Son, S.H. Lee, E.S. Lee and Y.D. Jahng, One-Pot Synthesis of Simple Alkaloids: 2,3-Polymethylene-4(3H)-quinazolinones, Luotonin A, Tryptanthrin, and Rutaecarpine, Chem. Pharm. Bull. (Tokyo), 56, 607 (2008); https://doi.org/10.1248/cpb.56.607
- J.L. Liang, S.-E. Park, Y. Kwon and Y. Jahng, Synthesis of Benzo-annulated Tryptanthrins and their Biological Properties, Bioorg. Med. Chem., 20, 4962 (2012); https://doi.org/10.1016/j.bmc.2012.06.034
- F. Diederich and P.J. Stang, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: New York (1998).
- C.J. Li, Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res., 42, 335 (2009); https://doi.org/10.1021/ar800164n
- J.A. Labinger and J.E. Bercaw, Understanding and Exploiting C–H Bond Activation, Nature, 417, 507 (2002); https://doi.org/10.1038/417507a
- C. He, S. Guo, J. Ke, J. Hao, H. Xu, H.Y. Chen and A.W. Lei, Silver-Mediated Oxidative C–H/C–H Functionalization: A Strategy to Construct Polysubstituted Furans, J. Am. Chem. Soc., 134, 5766 (2012); https://doi.org/10.1021/ja301153k
- F. Jia and Z.P. Li, Iron-Catalyzed/Mediated Oxidative Transformation of C–H Bonds, Org. Chem. Front., 1, 194 (2014); https://doi.org/10.1039/C3QO00087G
- Y.H. Yan, Y.H. Zhang, C.T. Feng, Z.G. Zha and Z.Y. Wang, Selective Iodine-Catalyzed Intermolecular Oxidative Amination of C(sp3)-H Bonds with ortho-Carbonyl-Substituted Anilines to Give Quinazoline, Angew. Chem. Int. Ed., 51, 8077 (2012); https://doi.org/10.1002/anie.201203880
- Z.J. Liu, J. Zhang, S.L. Chen, E.B. Shi, Y. Xu and X.B. Wan, Cross Coupling of Acyl and Aminyl Radicals: Direct Synthesis of Amides Catalyzed by Bu4NI with TBHP as an Oxidant, Angew. Chem., Int. Ed., 51, 3231 (2012); https://doi.org/10.1002/anie.201108763
- F. Collet, C. Lescot and P. Dauban, Catalytic C–H Amination: The Stereoselectivity Issue, Chem. Soc. Rev., 40, 1926 (2011); https://doi.org/10.1039/c0cs00095g
- S.H. Cho, J.Y. Kim, J. Kwak and S. Chang, Recent Advances in the Transition Metal-Catalyzed Twofold Oxidative C–H Bond Activation Strategy for C–C and C–N Bond Formation, Chem. Soc. Rev., 40, 5068 (2011); https://doi.org/10.1039/c1cs15082k
- W.J. Yoo and C.J. Li, Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts, J. Am. Chem. Soc., 128, 13064 (2006); https://doi.org/10.1021/ja064315b
- R. Vanjari and K.N. Singh, Utilization of Methylarenes as Versatile Building Blocks in Organic Synthesis, Chem. Soc. Rev., 44, 8062 (2015); https://doi.org/10.1039/C5CS00003C
- D. Zhao, T. Wang and J.-X. Li, Metal-free Oxidative Synthesis of Quinazolinones via Dual Amination of sp3 C–H Bonds, Chem. Commun., 50, 6471 (2014); https://doi.org/10.1039/C4CC02648A
- S.E. Allen, R.R. Walvoord, R. Padilla-Salinas and M.C. Kozlowski, Aerobic Copper-Catalyzed Organic Reactions, Chem. Rev., 113, 6234 (2013); https://doi.org/10.1021/cr300527g
- J. Kim, H. Kim and S. Chang, Copper-Mediated Selective Cyanation of Indoles and 2-Phenylpyridines with Ammonium Iodide and DMF, Org. Lett., 14, 3924 (2012); https://doi.org/10.1021/ol301674m
- B. Nachtsheim and P. Finkbeiner, Synthesis, 45, 979 (2013); https://doi.org/10.1055/s-0032-1318330
- H. Huang, X. Ji, W. Wu and H. Jiang, Practical Synthesis of Polysubstituted Imidazoles via Iodine- Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines, Adv. Synth. Catal., 355, 170 (2013); https://doi.org/10.1002/adsc.201200582
- W. Xu, U. Kloeckner and B.J. Nachtsheim, Direct Synthesis of 2,5-Disubstituted Oxazoles through an Iodine-Catalyzed Decarboxylative Domino Reaction, J. Org. Chem., 78, 6065 (2013); https://doi.org/10.1021/jo400753n
- W.C. Gao, R.L. Wang and C. Zhang, Practical Oxazole Synthesis Mediated by Iodine from a-Bromoketones and Benzylamine Derivatives, Org. Biomol. Chem., 11, 7123 (2013); https://doi.org/10.1039/c3ob41566j
References
C.W. Jao, W.-C. Lin, Y.-T. Wu and P.L. Wu, Isolation, Structure Elucidation and Synthesis of Cytotoxic Tryptanthrin Analogues from Phaius mishmensis, J. Nat. Prod., 71, 1275 (2008); https://doi.org/10.1021/np800064w
L. Zhang, X.-M. Peng, G.L.V. Damu, R.-X. Geng and C.-H. Zhou, Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry, Med. Res. Rev., 34, 340 (2014); https://doi.org/10.1002/med.21290
J.F. González, I. Ortín, E. de la Cuesta and J.C. Menéndez, Privileged Scaffolds in Synthesis: 2,5-Piperazinediones as Templates for the Preparation of Structurally Diverse Heterocycles, Chem. Soc. Rev., 41, 6902 (2012); https://doi.org/10.1039/c2cs35158g
U.A. Kshirsagar, Recent Developments in the Chemistry of Quinazolinone Alkaloids, Org. Biomol. Chem., 13, 9336 (2015); https://doi.org/10.1039/C5OB01379H
M.M. Kamel, W.A. Zaghary, R.I. Al-Wabli and M.M. Anwar, Egypt. Pharm. J., 15, 98 (2016); https://doi.org/10.4103/1687-4315.197580
F.-D. Kong, S.-L. Zhang, S.-Q. Zhou, Q.-Y. Ma, Q.-Y. Xie, J.-P. Chen, J.-H. Li, L.-M. Zhou, J.-Z. Yuan, Z. Hu, H.-F. Dai, X.-L. Huang and Y.-X. Zhao, J. Nat. Prod., 82, 3456 (2019); https://doi.org/10.1021/acs.jnatprod.9b00845
S. Sinha and M. Srivastava, Biologically Active Quinazolones, Prog. Drug Res., 43, 143 (1994); https://doi.org/10.1007/978-3-0348-7156-3_5
H. Xie, Y. Zhang, S. Zhang, X. Chen and W. Wang, Bifunctional Cinchona Alkaloid Thiourea Catalyzed Highly Efficient, Enantio-selective Aza-Henry Reaction of Cyclic Trifluoromethyl Ketimines: Synthesis of Anti-HIV Drug DPC 083, Angew. Chem. Int. Ed., 50, 11773 (2011); https://doi.org/10.1002/anie.201105970
L. Li, J. Ge, H. Wu, Q.-H. Xu and S.Q. Yao, Organelle-Specific Detection of Phosphatase Activities with Two-Photon Fluorogenic Probes in Cells and Tissues, J. Am. Chem. Soc., 134, 12157 (2012); https://doi.org/10.1021/ja3036256
A.K. Bhattacharjee, M.G. Hartell, D.A. Nichols, R.P. Hicks, B. Stanton, J.E. van Hamont and W.K. Milhous, Analysis of Stereoelectronic Properties, Mechanism of Action and Pharmacophore of Synthetic Indolo[2,1-b]quinazoline-6,12-dione Derivatives in Relation to Antileishmanial Activity using Quantum Chemical, Cyclic Voltammetry and 3-D-QSAR Catalyst Procedures, Eur. J. Med. Chem., 39, 59 (2004); https://doi.org/10.1016/j.ejmech.2003.10.004
J. Scovill, E. Blank, M. Konnick, E. Nenortas and T. Shapiro, Antitrypanosomal Activities of Tryptanthrins, Antimicrob. Agents Chemother., 46, 882 (2002); https://doi.org/10.1128/AAC.46.3.882-883.2002
B. Krivogorsky, P. Grundt, R. Yolken and L. Jones-Brando, Inhibition of Toxoplasma gondii by Indirubin and Tryptanthrin Analogs, Antimicrob. Agents Chemother., 52, 4466 (2008); https://doi.org/10.1128/AAC.00903-08
A.K. Bhattacharjee, D.J. Skanchy, B. Jennings, T.H. Hudson, J.J. Brendle and K.A. Werbovetz, Structure-Activity Relationship Study of Antimalarial Indolo [2,1-b]quinazoline-6,12-diones (Tryptanthrins). Three dimensional Pharmacophore Modeling and Identification of New Antimalarial Candidates, Bioorg. Med. Chem., 10, 1979 (2002); https://doi.org/10.1016/S0968-0896(02)00013-5
V.M. Sharma, P. Prasanna, K.V. Adi Seshu, B. Renuka, C.V. Laxman Rao, G. Sunil Kumar, C.P. Narasimhulu, P. Aravind Babu, R.C. Puranik, D. Subramanyam, A. Venkateswarlu, S. Rajagopal, K.B.S. Kumar, C.S. Rao, N.V.S.R. Mamidi, D.S. Deevi, R. Ajaykumar and R. Rajagopalan, Bioorg. Med. Chem. Lett., 12, 2303 (2002); https://doi.org/10.1016/S0960-894X(02)00431-6
T. Motoki, Y. Takami, Y. Yagi, A. Tai, I. Yamamoto and E. Gohda, Inhibition of Hepatocyte Growth Factor Induction in Human Dermal Fibroblasts by Tryptanthrin, Biol. Pharm. Bull., 28, 260 (2005); https://doi.org/10.1248/bpb.28.260
R.P. Hicks, D.A. Nichols, C.A. DiTusa, D.J. Sullivan, M.G. Hartell, B.W. Koser and A.K. Bhattacharjee, Evaluation of 4-Azaindolo[2,1-b]-quinazoline–6,12–diones’ Interaction with Hemin and Hemozoin: A Spectroscopic, X-ray Crystallographic and Molecular Modeling Study, Internet Electron. J. Mol. Des., 4, 751 (2005).
K. Iwaki, E. Ohashi, N. Arai, K. Kohno, S. Ushio, M. Taniguchi and S. Fukuda, Tryptanthrin Inhibits Th2 Development and IgE-Mediated Degranulation and IL-4 Production by Rat Basophilic Leukemia RBL-2H3 Cells, J. Ethnopharmacol., 134, 450 (2011); https://doi.org/10.1016/j.jep.2010.12.041
M. Sarangapani and V.M. Reddy, Phramacological Evaluation of 1-(N,N-Disubstituted aminomethyl)-3-imino-(2-phenyl-3,4-dihydro-4-oxo-quinazolin-3-yl)indolin-2-ones, Indian J. Pharm. Sci., 58, 147 (1996).
A. Kumar, V.D. Tripathi and P. Kumar, b-Cyclodextrin Catalysed Synthesis of Tryptanthrin in Water, Green Chem., 13, 51 (2011); https://doi.org/10.1039/C0GC00523A
U.A. Kshirsagar and N.P. Argade, Copper-Catalyzed Intramolecular N-Arylation of Quinazolinones: Facile Convergent Approach to (-)-Circumdatins H and J, Org. Lett., 12, 3716 (2010); https://doi.org/10.1021/ol101597p
K.C. Jahng, S.I. Kim, D.H. Kim, C.S. Seo, J.K. Son, S.H. Lee, E.S. Lee and Y.D. Jahng, One-Pot Synthesis of Simple Alkaloids: 2,3-Polymethylene-4(3H)-quinazolinones, Luotonin A, Tryptanthrin, and Rutaecarpine, Chem. Pharm. Bull. (Tokyo), 56, 607 (2008); https://doi.org/10.1248/cpb.56.607
J.L. Liang, S.-E. Park, Y. Kwon and Y. Jahng, Synthesis of Benzo-annulated Tryptanthrins and their Biological Properties, Bioorg. Med. Chem., 20, 4962 (2012); https://doi.org/10.1016/j.bmc.2012.06.034
F. Diederich and P.J. Stang, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH: New York (1998).
C.J. Li, Cross-Dehydrogenative Coupling (CDC): Exploring C-C Bond Formations beyond Functional Group Transformations, Acc. Chem. Res., 42, 335 (2009); https://doi.org/10.1021/ar800164n
J.A. Labinger and J.E. Bercaw, Understanding and Exploiting C–H Bond Activation, Nature, 417, 507 (2002); https://doi.org/10.1038/417507a
C. He, S. Guo, J. Ke, J. Hao, H. Xu, H.Y. Chen and A.W. Lei, Silver-Mediated Oxidative C–H/C–H Functionalization: A Strategy to Construct Polysubstituted Furans, J. Am. Chem. Soc., 134, 5766 (2012); https://doi.org/10.1021/ja301153k
F. Jia and Z.P. Li, Iron-Catalyzed/Mediated Oxidative Transformation of C–H Bonds, Org. Chem. Front., 1, 194 (2014); https://doi.org/10.1039/C3QO00087G
Y.H. Yan, Y.H. Zhang, C.T. Feng, Z.G. Zha and Z.Y. Wang, Selective Iodine-Catalyzed Intermolecular Oxidative Amination of C(sp3)-H Bonds with ortho-Carbonyl-Substituted Anilines to Give Quinazoline, Angew. Chem. Int. Ed., 51, 8077 (2012); https://doi.org/10.1002/anie.201203880
Z.J. Liu, J. Zhang, S.L. Chen, E.B. Shi, Y. Xu and X.B. Wan, Cross Coupling of Acyl and Aminyl Radicals: Direct Synthesis of Amides Catalyzed by Bu4NI with TBHP as an Oxidant, Angew. Chem., Int. Ed., 51, 3231 (2012); https://doi.org/10.1002/anie.201108763
F. Collet, C. Lescot and P. Dauban, Catalytic C–H Amination: The Stereoselectivity Issue, Chem. Soc. Rev., 40, 1926 (2011); https://doi.org/10.1039/c0cs00095g
S.H. Cho, J.Y. Kim, J. Kwak and S. Chang, Recent Advances in the Transition Metal-Catalyzed Twofold Oxidative C–H Bond Activation Strategy for C–C and C–N Bond Formation, Chem. Soc. Rev., 40, 5068 (2011); https://doi.org/10.1039/c1cs15082k
W.J. Yoo and C.J. Li, Highly Efficient Oxidative Amidation of Aldehydes with Amine Hydrochloride Salts, J. Am. Chem. Soc., 128, 13064 (2006); https://doi.org/10.1021/ja064315b
R. Vanjari and K.N. Singh, Utilization of Methylarenes as Versatile Building Blocks in Organic Synthesis, Chem. Soc. Rev., 44, 8062 (2015); https://doi.org/10.1039/C5CS00003C
D. Zhao, T. Wang and J.-X. Li, Metal-free Oxidative Synthesis of Quinazolinones via Dual Amination of sp3 C–H Bonds, Chem. Commun., 50, 6471 (2014); https://doi.org/10.1039/C4CC02648A
S.E. Allen, R.R. Walvoord, R. Padilla-Salinas and M.C. Kozlowski, Aerobic Copper-Catalyzed Organic Reactions, Chem. Rev., 113, 6234 (2013); https://doi.org/10.1021/cr300527g
J. Kim, H. Kim and S. Chang, Copper-Mediated Selective Cyanation of Indoles and 2-Phenylpyridines with Ammonium Iodide and DMF, Org. Lett., 14, 3924 (2012); https://doi.org/10.1021/ol301674m
B. Nachtsheim and P. Finkbeiner, Synthesis, 45, 979 (2013); https://doi.org/10.1055/s-0032-1318330
H. Huang, X. Ji, W. Wu and H. Jiang, Practical Synthesis of Polysubstituted Imidazoles via Iodine- Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines, Adv. Synth. Catal., 355, 170 (2013); https://doi.org/10.1002/adsc.201200582
W. Xu, U. Kloeckner and B.J. Nachtsheim, Direct Synthesis of 2,5-Disubstituted Oxazoles through an Iodine-Catalyzed Decarboxylative Domino Reaction, J. Org. Chem., 78, 6065 (2013); https://doi.org/10.1021/jo400753n
W.C. Gao, R.L. Wang and C. Zhang, Practical Oxazole Synthesis Mediated by Iodine from a-Bromoketones and Benzylamine Derivatives, Org. Biomol. Chem., 11, 7123 (2013); https://doi.org/10.1039/c3ob41566j