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I N T R O D U C T I O N

Tryptanthrin (indolo[2,1-b]quinazoline-6,12-dione) is an
alkaloid comprising quinazoline ring fused to an indole moiety
with carbonyl groups at 6- and 12-positions and has emerged
as a potential therapeutic agent [1]. Nitrogen containing fused
polyheteroarenes are often found as structural frameworks in
natural products and pharmaceutically active compounds [2,3].
In particular, the indole fused quinazolinone is a core structure
of diverse alkaloids with a broad spectrum of biological activities
[4-9]. Furthermore, indolo[2,1-b]quinazolinones are found to
exhibit intriguing biological properties such as antitumor activity
against leukemia U937, breast MCF-7, glioma U251, colon
SW620 and lung H522 cancer cell lines [10], antituberculosis
[11,12], antiprotozoal, antioxidant, antibacterial [13-15], anti-
parasitic and anti-inflammatory activities [16]. More specifi-
cally, the fused quinazolinone natural products such as asperlicins,
circumdatins, benzomalvins, tryptanthrin and its analogues
phaitanthrins A-E, methylisatoid, candidine, etc. (Fig. 1) were
isolated from particular orchid, Phaius mishmensis. They play
an important role in medicinal chemistry due to their structure
and promising bioactivity [17,18].

In view of the importance of these heterocycles, diverse
synthetic methods have been developed for the synthesis of
indolo[2,1-b]quinazolines. Among them, condensation between
isatoic anhydrides and isatins in the presence of triethylamine

An efficient approach for the formation of biologically important
indolo[2,1-b]quinazoline-6,12-diones in good to moderate yields has
been accomplished from 2-haloacetophenones and anthranilamides
employing I2/DMSO/CuI under aerobic conditions. This tandem process
is believed to proceed via iodination of 2-haloacetophenone followed
by Kornblum oxidation and copper-catalyzed intramolecular N-
arylation. This method adopts five reactions such as α-halogenation,
oxidation, condensation, aromatization and heteroaryl coupling in a
single step which makes it as an attractive and useful for the synthesis
of indolo[2,1-b]quinazoline-6,12-diones.

A B S T R A C T

https://orcid.org/0000-0003-3451-4440


2

or in aqueous β-cyclodextrin solution has been studied [19].
Recently, tryptanthrin has been synthesized from quinazolines
esters with aryl TMS triflates in one step reaction [20]. An alter-
native method of condensation between o-aminobenzoic acid
and isatin in the presence of SOCl2 has been reported [21,22].

However, most of these approaches still suffer from draw-
backs such as harsh reaction conditions, prolonged reaction
times, poor substrate scope and utilizing step-by-step synthetic
strategy. Therefore, the development of a simple and conve-
nient methodology under mild conditions is highly desirable
for the synthesis of indolo[2,1-b]quinazoline-6,12-diones.

Direct transformations of inert chemical bonds particularly
sp3 C-H bond functionalization for the formation of C-C and
C-N bonds have become an imperative synthetic strategy in
sustainable chemistry [23-26]. However, most of these reactions
require costly reagents like Ru-, Rh-, Ir- and Pd-complexes as
catalysts [27-29] and consequent functionalization of sp3 and
sp2 C-H bonds, which directly fix main functional groups to
enhance the structural complexity of simply prepared substrates
(Fig. 2) [30-32].

In current years, as per the requirement of green chemistry
on synthetic efficiency and atom economy, the construction
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of quinazolinone core structure through direct sp3 C–H bond
functionalization has become a much more ideal approach
[33,34]. In this context, recently I2-promoted C–H
functionalization reactions have gained increasing attention
in organic synthesis as a promising strategy due to their cost
efficiency, low toxicity, availability and broad functional group
tolerance [35-40]. In this communication, an I2-promoted sp3

C-H functionalization and aerobic copper catalyzed reaction
system for the formation of new C–C and C–N bonds for
accessing indolo[2,1-b]quinazo-line-6-12-diones is illustrated.

E X P E R I M E N T A L

One-pot synthesis of indolo[2,1-b]quinazoline-6,12-
dione congeners (3a-n): To a stirred solution of compound 1
(1 mmol) in DMSO (5 mL), 2-bromo acetophenone (2, 1 mmol)
and I2 (1.5 equiv) was added at room temperature. The resulting
mixture was stirred at 100 ºC in open air condition for about 4 h.
After that the reaction mixture was cooled to room temperature
and CuI (0.3 equiv.) and Cs2CO3 (1 equiv.) was added. Then
reaction was allowed to stir at 100 ºC for 2 h and the progress of
the reaction was monitored by checking TLC. After completion
of the reaction, the reaction mixture was quenched with saturated
sodium thiosulfate solution (2 mL) and extracted with dichloro-
methane (3 × 2.5 mL). The organic layers were combined,
washed with brine (3-5 mL), dried with anhydrous Na2SO4

and concentrated in vacuo. The resulting crude product was
purified by silica gel column chromatography (100-200 mesh)
with ethyl acetate/hexane as eluent to afford the pure desired
products (Scheme-I).

Indolo[2,1-b]quinazoline-6,12-dione (3a): Yield: 78%;
yellow solid; m.p.: 266-268 ºC; 1H NMR (300 MHz, CDCl3):
δ 8.64 (d, J = 7.5 Hz, 1H), 8.45 (d, J = 7.5 Hz, 1H), 8.04 (d, J
= 8.1 Hz, 1H), 7.95 - 7.76 (m, 3H), 7.69 (t, J = 8.3 Hz, 1H)
7.44 (t, 1H, J = 7.1 Hz) ppm; 13C NMR (125 MHz, CDCl3): δ

183.0, 160.0, 146.6, 145.3, 134.6, 133.2, 130.0, 129.7, 126.3,
125, 120.6, 117.2 ppm; MS (EI): m/z calcd. for C15H8N2O2:
248, Found: 249(M+); HRMS (ESI): m/z calcd. for C15H8N2O2:
248.0586; found: 248.0584.

1-Chloroindolo[2,1-b]quinazoline-6,12-dione (3b): Yield:
82%; orange solid; m.p.: 282-285 ºC; 1H NMR (300 MHz,
CDCl3): δ 8.63 (d, J = 8.7 Hz, 1H), 8.34 (d, J = 7.7 Hz, 1H),
7.93 (d, J = 8.0 Hz, 1H), 7.83-7.77 (m, 2H), 7.72-7.64 (m, 2H)
ppm; 13C NMR (125 MHz, CDCl3): δ 181.1, 158.2, 157.1, 147.4,
145.6, 140.6, 134.7, 130.7, 130.3, 127.6, 125.5, 123.2, 122.5,
119.3, 108.3 ppm; MS (EI): m/z ([M]+): 282; HRMS (EI): m/z
calcd. for C15H7ClN2O2: 282.0196; found: 282.0194.

1-Methylindolo[2,1-b]quinazoline-6,12-dione (3c):
Yield: 55%; yellow solid; m.p.: 192-194 ºC; 1H NMR (300 MHz,
CDCl3): δ 8.62 (d, J = 7.8 Hz, 1H), 7.94 (t, J = 7.2 Hz, 2H),
7.80-7.75 (m, 2H), 7.60-7.46 (m, 3H), 2.5 (s, 3H) ppm; 13C
NMR (125 MHz, CDCl3): δ 180.0, 164.3, 156.8, 142.6, 138.1,
134.1, 133.2, 129.1, 126.8, 125.2, 121.9, 117.9, 23.07 ppm; MS
(EI): m/z ([M]+): 262; HRMS (EI): m/z calcd. for C16H10N2O2:
262.0742; found: 262.0738.

2-Bromoindolo[2,1-b]quinazoline-6,12-dione (3d): Yield:
74%; pale yellow solid, m.p.: 254-250 ºC; 1H NMR (500 MHz,
CDCl3): δ 8.12 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 8.7 Hz, 1H),
7.61-7.54 (m, 2H), 7.43 (m, 1H), 6.78 (s, 1H), 6.67 (dd, J =
1.7, J = 8.7 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl3): δ 180.0,
146.4, 138.5, 136.3, 129.3, 128.5, 127.1, 124.6, 124.1, 115.4,
115.2, 113.8 ppm; MS (EI): m/z ([M]+): 325; HRMS (EI): m/z
calcd. for C15H7BrN2O2: 325.9691; found: 325.9697.

8-(Trifluoromethoxy)indolo[2,1-b]quinazoline-6,12-
dione (3e): Yield: 72%; yellow solid, m.p.: 238-236 ºC; 1H NMR
(500 MHz, CDCl3): δ 8.74 (d, J = 8.7 Hz, 1H), 8.45 (d, J = 8.9
Hz, 1H),8.06 (d, J = 7.6 Hz, 1H), 7.84 (dt, J = 1.4, J = 8.5 Hz,
1H), 7.77-7.64 (m, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ
180.6, 157.2, 147.1, 145.9, 143.7, 143.6, 134.4, 130.8, 130.5,
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130.2, 127.2, 123.1, 122.7, 119.1, 117.3 ppm; MS (EI): m/z
([M]+): 332; HRMS (EI): m/z calcd. for C16H7F3N2O3:
332.0409; found: 332.0408.

3-Chloroindolo[2,1-b]quinazoline-6,12-dione (3f): Yield:
84%; pale yellow solid, m.p.: 286-288 ºC; 1H NMR (300 MHz,
CDCl3): δ 8.58 (d, J = 8.0 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H),
8.16 (d, J = 8.4 Hz, 1H), 8.02-8.01 (m, 1H), 7.94 (d, J = 7.5
Hz, 1H), 7.83 (dt, J = 1.3, J = 8.0 Hz, 1H), 7.66-7.57 (m, 1H)
ppm; 13C NMR (75 MHz, CDCl3): δ 171.6, 166.3, 145.3, 143.5,
139.6, 131.5, 129.8, 128.5, 128.1, 127.3, 126.7, 126.5, 122.3,
119.4 ppm; MS (EI): m/z ([M]+): 282; HRMS (EI): m/z calcd.
for C15H7ClN2O2: 282.0196; found: 282.0194.

3-Chloro-8-methylindolo[2,1-b]quinazoline-6,12-dione
(3g): Yield: 69%; yellow solid, m.p.: 268-270 ºC; 1H NMR
(300 MHz, CDCl3): δ 8.63 (d, J = 8.6 Hz, 1H), 7.88-7.86 (m,
1H), 7.75-7.67 (m, 2H), 7.54-7.55 (m, 1H), 7.47 (d, J = 7.5 Hz,
1H) ppm; 13C NMR (75 MHz, CDCl3): δ 179.6, 169.7, 147.4,
145.5, 142.8, 137.3, 134.9, 133.5, 130.7, 130.3, 129.6, 128.5,
125.1, 122.3, 119.5, 23.6 ppm; MS (EI): m/z ([M]+): 296; HRMS
(EI): m/z calcd. for C16H9ClN2O2: 296.0353; found: 296.0355.

8-Methoxyindolo[2,1-b]quinazoline-6,12-dione (3h):
Yield: 69%; yellow solid, m.p.: 278-282 ºC; 1H NMR (300 MHz,
CDCl3): δ 8.57 (d, J = 8.7 Hz, 1H), 8.46 (dd, J = 1.4, J = 8.1 Hz,
1H), 8.04 (d, J = 8.0 Hz, 1H), 7.86 (dt, J = 1.8, J = 8.5 Hz, 1H),
7.73-7.66 (m, 1H), 7.38 (d, J = 3.9, 1H), 7.35 (dd, J = 2.8, J =
8.8 Hz, 1H), 3.7 (s, 3H) ppm; 13C NMR (75 MHz, CDCl3): δ
182.7, 158.1, 156.3, 146.5, 144.7, 139.1, 134.3, 130.5, 129.9,
127.2, 124.3, 123.6, 122.3, 118.8, 108.1, 56.1 ppm; MS (EI):
m/z ([M]+): 278. HRMS (EI): m/z calcd. for C16H10N2O3: 278.0691;
found: 278.0693.

2-Nitroindolo[2,1-b]quinazoline-6,12-dione (3i): Yield:
67%; yellow solid, m.p.: 250-252 ºC; 1H NMR (500 MHz, CDCl3):
δ 8.25 (d, J = 8.4 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.73-7.66
(m, 1H), 7.58 (s, 1H), 7.52-7.50 (m, 1H), 7.45 (dd, J = 1.9, J =
8.4 Hz, 1H) ppm; 13C NMR (75 MHz, CDCl3): δ 181.3, 157.5,
157.2, 149.3, 146.5, 131.6, 130.2, 130.3, 129.5, 128.3, 127.6,
125.4, 116.3, 115.6 ppm; MS (EI): m/z ([M]+): 293.

8-Methyl indolo[2,1-b]quinazoline-6,12-dione (3j): Yield:
75%; yellow solid, m.p.: 276-274 ºC; 1H NMR (300 MHz,
CDCl3): δ 8.92 (dd, J = 8.2, J = 13.9 Hz, 1H), 8.64-8.50 (m,
1H), 8.30-8.13 (m, 1H), 7.88-7.35 (m, 2H), 7.34-7.29 (m, 1H),
3.03 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ 181.6, 167.4,
147.6, 146.2, 143.5, 138.4, 134.3, 131.6, 129.7, 127.1, 126.3,
117.2, 116.8, 116.1, 25.2 ppm; MS (EI): m/z ([M]+): 262; HRMS
(EI): m/z calcd. for C16H10N2O2: 262.0742; found: 262.0746.

8-Bromoindolo[2,1-b]quinazoline-6,12-dione (3k):
Yield: 76%; cream colour solid, m.p.: 294-296 ºC; 1H NMR
(500 MHz, CDCl3): δ 8.5-8.41 (m, 3H), 7.75-7.67 (m, 2H),
7.40 (t, J = 7.7 Hz, 1H), 7.14 (s, 1H) ppm; 13C NMR (125 MHz,
CDCl3): δ 189.2, 155.3, 154.3, 137.5, 135.3, 134.9, 134.8, 131.3,
129.7, 125.4, 124.7, 113.3, 113.0, 112.7 ppm; MS (EI): m/z ([M]+):
325; HRMS (EI): m/z calcd. for C15H7BrN2O2: 325.9691; found:
325.9697.

3,8-Dichloroindolo[2,1-b]quinazoline-6,12-dione (3l):
Yield: 76%; yellow solid; m.p.: 286-288 ºC; 1H NMR (500
MHz, CDCl3): δ 8.23 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.7 Hz,
1H), 7.69-7.67 (m, 1H), 7.54 (s, 1H), 7.50-7.48 (m, 1H) 7.41
(dd, J = 1.9, J = 8.4 Hz, 1H) ppm; 13C NMR (125 MHz, CDCl3):

δ 181.1, 157.5, 157.1, 149.6, 146.3, 131.9, 130.8, 130.3, 129.2,
128.4, 127.7, 125.3, 116.7, 115.6 ppm; MS (EI): m/z ([M]+):
315; HRMS (EI): m/z calcd. for C15H6Cl2N2O2: 315.9806; found:
315.9816.

8-Chloroindolo[2,1-b]quinazoline-6,12-dione (3m): Yield:
68%; yellow solid; m.p.: 289-291 ºC; 1H NMR (500 MHz,
CDCl3): δ 8.52 (d, J = 8.6 Hz, 1H), 8.37 (d, J = 7.6 Hz,1H),
7.97 (d, J = 8.0 Hz, 1H), 7.82-7.78 (m, 2H), 7.69-7.59 (m, 2H)
ppm; 13C NMR (125 MHz, CDCl3): δ 181.1, 158.5, 157.1, 146.6,
144.3, 140.1, 134.8, 130.5, 127.4, 125.2, 123.7, 122.5, 119.0,
108.3 ppm; MS (EI): m/z ([M]+): 282; HRMS (EI): m/z calcd.
for C15H7ClN2O2: 282.0196; found: 282.0198.

8-Chloro-1-methyl indolo[2,1-b]quinazoline-6,12-
dione (3n): Yield: 58%; yellow solid; m.p.: 263-265 ºC; 1H NMR
(300 MHz, CDCl3): δ 8.63 (d, J = 8.6 Hz, 1H), 7.86-7.84 (m,
1H), 7.75-7.68 (m, 2H), 7.56-7.54 (m, 1H), 7.46 (d, J = 7.5 Hz,
1H), 3.03 (s, 3H) ppm; 13C NMR (125 MHz, CDCl3): δ 179.6,
169.4, 147.6, 145.2, 142.5, 137.4, 134.2, 133.4, 130.7, 127.1,
126.3, 125.2, 122.7, 119.3, 24.1 ppm; MS (EI): m/z ([M]+):
296; HRMS (EI): m/z calcd. for C16H9ClN2O2: 296.0353; found:
296.0354.

R E S U L T S A N D   D I S C U S S I O N

Initially, retrosynthetically was envisioned that indolo-
[2,1-b]quinazoline-6,12-dione could be achieved from comp-
ounds 1 & 2 assembling four reactions in one pot while aldehyde
B might be furnished from the α-bromo ketone 2 through
Kornblum oxidation. It was also thought that B could easily
cyclized to C and 3 furnished via intramolecular hetero aryl
coupling of C (Scheme-II).
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Scheme-II: Retrosynthetic analysis

Afterward, many approaches for the synthesis of indolo-
[2,1-b]quinazoline-6,12-dione have been developed which
consist of α-iodination, Kornblum oxidation, intermolecular
condensation, aromatization and hetero arylation reaction
sequence as shown in Scheme-IV. However, it remains scarce
to apply these reactions to construct N-heterocycles. In this
context, herein, we wished to check whether it would be work-
able to extend a one-pot protocol for the synthesis of indolo-
[2,1-b]quinazoline-6-12-dione conjugates, which can be
synthesized in a straightforward oxidative cyclization reaction
of anthranilamide with 2-bromo acetophenone, wherein
five reactions would self-sequentially take place in one-pot
(Scheme-IV).
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Present preliminary investigation started with a model
reaction in one pot, the condensation of anthranilamide (1a)
and 2-bromo acetophenone (2a) using I2 under solvent free
conditions at room temperature for 24 h for the synthesis of
indolo[2,1-b]quinazoline-6,12-diones, no reaction (entry 1,
Table-1) was observed even after prolonged time. Next, we
performed this reaction using DMSO as a solvent at room
temperature, we observed the required product in traces (entry 2,
Table-1). Interestingly, we carried out the same reaction at
100 ºC for 12 h, formation of product (3a) in 15% yield was
observed (entry 3, Table-1). Encouraged by the above results,
we performed further optimization for improving the yield of
the product, by altering the reaction conditions using various
catalysts, oxidants, solvents. The poor yield of the product
could be due to inadequate catalytic efficiency and low solub-
ility of the reactants, With a view to further improve the yield,
the reaction was screened using various catalysts such as copper
catalysts along with different concentrations of oxidants in
various solvents were investigated (entries 4-17). Lower yield
was obtained when the reaction was conducted without base,
so different bases such as Na2CO3, K2CO3, K3PO4·3H2O,
Cs2CO3 were examined (entries 6-17). Among all, Cs2CO3 was

found to be effective. Thereafter, various oxidants with different
iodine sources like phenyliodonium diacetate (PIDA), tetra-
butylammonium iodide (TBAI), N-iodosuccinimide (NIS) along
with molecular iodine (I2) were investigated (entries 15-17), it
was observed that PIDA and TBAI were ineffective for this
transformation, whereas NIS has shown little conversion yielding
traces of required product (3a). This observation confirmed
that molecular iodine is necessary oxidant for the success of
this transformation. Additionally, the reaction with various
equivalents of I2 from 0.3-2.2 equivalents (entries 3-14) was
also studied. No effect on the yield as well as reaction time
(entry 14, Table-1) was observed even by increasing the oxidant
to stoichiometric ratio. Furthermore, the experimental results
showed that copper reagents could catalyze the transformation,
so we screened various copper salts, including CuBr2, CuCl2,
Cu(OAc)2, Cu(NO3)2, Cu(OTf)2, CuCl, CuI (entries 4-16).

Screening of copper salts revealed that CuI is a suitable
catalyst for the reaction and yielded the product 3a in good
yield (78%, entry 13, Table-1). Lower yield was obtained when
the reaction was conducted under an argon or N2 atmosphere.
In order to improve the yield of the reaction, the effect of solvents
were investigated using other solvents such as EtOAc, CH3CN,
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DCM, THF, iPrOH, toluene, DMF, DCE, anisole, DMSO (entries
2-13). Among these, most of the solvents resulted in lower
yields (entries 4-12), compared to DMSO which could imply
that the DMSO may act as a supplementary oxidant for the
oxidation of C(sp3)-H bond. After systematic optimization of
reaction revealed that the best optimization conditions were I2

(1.5 equiv.), CuI (0.3 equiv.) and Cs2CO3 (1 equiv.) in DMSO
at 100 ºC for 6h (entry 13, Table-1).

With the established optimized conditions in hand then
investigated the reaction scope and generality of this protocol
was further illustrated towards the synthesis of various indolo-
[2,1-b]quinazoline-6,12-diones, which are biologically impor-
tant heterocycles in medicinal chemistry. We then explored
the scope of the oxidative cyclization to various substituted
anthranilamides such as methyl, bromo, nitro and chloro.
Similarly, this protocol works well with 2-bromo acetophen-
ones bearing different substitutions such as alkyl and halo. In
case of halogen substituted substrates, the corresponding
substituted quinazoline derivative was obtained slightly in higher
yields. To our delight, in all cases, the desired condensed corres-
ponding quinazoline derivatives afforded in good to moderate
yields are shown in Scheme-I.

On the basis of experimental results, a tentative mechanism
for this conversion is briefly outlined in Scheme-III. Initially,
2a was α-iodination to A, which reacts with DMSO to provide
aldehyde B via Kornblum oxidation then, B converts into
cyclized intermediate C, followed by subsequent further arom-
atization to give the intermediate D and finally after intra-
molecular hetero aryl coupling of D afforded the corresponding
desired product 3a.

Conclusion

A highly versatile and straightforward tandem protocol
for the construction of biologically important indolo[2,1-b]-
quinazoline-6,12-diones from readily available starting
materials was reported. The cascade process is believed to
involve iodine mediated aerobic oxidation, iminium formation,
oxidative aromatization and intramolecular hetero aryl
coupling. The significant features of this methodology involves

TABLE-1 
OPTIMIZATION OF REACTION CONDITIONS FOR THE SYNTHESIS OF INDOLO[2,1-b]QUINAZOLINE-6,12-DIONES 

Entry Oxidant Cu source Base Solvent Temp. (°C) Yield[b] (%) 
1 I2 (0.3 eq) – – Neat RT NR[c] 
2 I2 (0.3 eq) – – DMSO RT Trace 
3 I2 (0.3 eq) – – DMSO 100 15 
4 I2 (0.3 eq) CuBr2 – EtOAc 70 22 
5 I2 (0.5 eq) CuCl2 – CH3CN 80 36 
6 I2 (0.8 eq) Cu(OAc)2 Na2CO3 CH2Cl2 30 33 
7 I2 (1 eq) Cu(OTf)2 K2CO3 iPrOH 80 48 
8 I2 (1.1 eq) Cu(OTf)2 K3PO4·3H2O Toluene 80 28 
9 I2 (1.2 eq) CuCl Cs2CO3 DMF 80 45 

10 I2 (1.3 eq) CuI[d] Cs2CO3 DCE 80 60 
11 I2 (1.5 eq) CuI Cs2CO3 Anisole 90 56 
12 I2 (1.5 eq) CuI Cs2CO3 DMSO 100 79 
13 I2 (2.2 eq) CuI Cs2CO3 DMSO 100 82 
14 PIDA (2 eq) CuI Cs2CO3 DMSO 100 NR 
15 NIS (2 eq) CuI Cs2CO3 DMSO 100 Trace 
17 TBAI (2 eq) CuI Cs2CO3 DMSO 100 NR 

[a]Reactions were performed using 1a (1 mmol), 2a (1 mmol), I2 (1.5 eq), CuI (30 mol%), Cs2CO3 (1 equiv) DMSO (5 mL) at 100 °C for 6 h. 
[b]Isolated yields. [c]No reaction. [d] 0.3 equiv of CuI. 

 
the usage of inexpensive, non-toxic I2 and air as an eco friendly
oxidant with broad range of substrate scope makes this protocol
economical, which is superior over the previous reports.
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