Main Article Content

Abstract

A mechanistic study of Staudinger reaction of 3-azido-1,2-diols has led to the formation of both azetidines and aziridines depending on experimental conditions. The separation of mixture of regioisomers of azido-diol was second order and carried out by tosylation and mesylation of both hydroxyl groups present. The electronic and steric properties of phosphine had no significant impact on the overall selectivity of the reaction but did affect the products yields. Finally, this reaction was carried out in different solvents and the choice of solvent was crucial on the time of reaction, enabling the formation of both functionalized aziridines and azetidines.

Keywords

Staudinger reaction Aza-Wittig reaction Aziridine Azetidine Azidoalcohol

Article Details

How to Cite
Kajima Mulengi, J., Keniche, A., Mezrai, A., Djedaini Pillard, F., & Bonnet, V. (2016). Unexpected Formation of Azetidines Through Staudinger Reaction of 3-Azido-1,2-diols. Asian Journal of Organic & Medicinal Chemistry, 1(1), 38–44. https://doi.org/10.14233/ajomc.2016.AJOMC-P15

References

  1. H. Staudinger and J. Meyer, Helv. Chim. Acta, 2, 635 (1919); http://dx.doi.org/10.1002/hlca.19190020164.
  2. N. Nepomniaschiy, V. Grimminger, A. Cohen, S. DiGiovanni, H.A. Lashuel and A. Brik, Org. Lett., 10, 5243 (2008); http://dx.doi.org/10.1021/ol802268e.
  3. Y. Wang, Y. Liang, L. Jiao, D.-M. Du and J. Xu, J. Org. Chem., 71, 6983 (2006); http://dx.doi.org/10.1021/jo0611521.
  4. H. Kato, K. Ohmori and K. Suzuki, Synlett, 1003 (2001); http://dx.doi.org/10.1055/s-2001-14646.
  5. (a) W.Q. Tian and Y.A. Wang, J. Chem. Theory Comput., 1, 353 (2005); http://dx.doi.org/10.1021/ct049918x.;
  6. (b) W. McCoull and F.A. Davis, Synthesis, 1347 (2000); http://dx.doi.org/10.1055/s-2000-7097.
  7. (a) M. Fischer and R. Tacke, Organometallics, 32, 7181 (2013); http://dx.doi.org/10.1021/om400873w.;
  8. (b) D.J. Ager, I. Prakash and D.R. Schaad, Chem. Rev., 96, 835 (1996); http://dx.doi.org/10.1021/cr9500038.;
  9. (c) S.C. Bergmeier, Tetrahedron, 56, 2561 (2000); http://dx.doi.org/10.1016/S0040-4020(00)00149-6.
  10. A.M. Ahad, S.M. Jensen and J.C. Jewett, Org. Lett., 15, 5060 (2013); http://dx.doi.org/10.1021/ol402404n.
  11. P.T. Nyffeler, C.H. Liang, K.M. Koeller and C.H. Wong, J. Am. Chem. Soc., 124, 10773 (2002); http://dx.doi.org/10.1021/ja0264605.
  12. (a) E. Saxon, S.J. Luchansky, H.C. Hang, C. Yu, C.S. Lee and C.R. Bertozzi, J. Am. Chem. Soc., 124, 14893 (2002); http://dx.doi.org/10.1021/ja027748x.;
  13. (b) E. Saxon, Science, 287, 2007 (2000); http://dx.doi.org/10.1126/science.287.5460.2007.
  14. L. LePichon and D.W. Stephan, Inorg. Chem., 40, 3827 (2001); http://dx.doi.org/10.1021/ic001303x.
  15. Y.G. Gololobov, I.N. Zhmurova and L.F. Kasukhin, Tetrahedron, 37, 437 (1981); http://dx.doi.org/10.1016/S0040-4020(01)92417-2.
  16. Y.G. Gololobov and L.F. Kasukhin, Tetrahedron, 48, 1353 (1992); http://dx.doi.org/10.1016/S0040-4020(01)92229-X.
  17. (a) P. Molina, A. Arques and M.V. Vinader, J. Org. Chem., 55, 4724 (1990); http://dx.doi.org/10.1021/jo00302a045.;
  18. (b) A. Kamal, A.A. Shaik, M. Sandbhor and M.S. Malik, Tetrahedron Asymmetry, 15, 935 (2004); http://dx.doi.org/10.1016/j.tetasy.2004.01.033.;
  19. (c) H. Ankati, Y. Yang, D. Zhu, E.R. Biehl and L. Hua, J. Org. Chem., 73, 6433 (2008); http://dx.doi.org/10.1021/jo8009616.
  20. (a) J. Tang, J. Dopke and J.G. Verkade, J. Am. Chem. Soc., 115, 5015 (1993); http://dx.doi.org/10.1021/ja00065a009.;
  21. (b). D.B. Janssen, M. Majeric-Elenkov, G. Hasnaoui, B. Hauer and J.H. Lutje Spelberg, Biocatalysis, 291 (2006); http://dx.doi.org/10.1002/cbic.200700734.;
  22. (c) Hasnaoui-Dijoux, M. Hasnaoui-Dijoux, J.H. Hasnaoui-Dijoux and B. Hasnaoui-Dijoux, ChemBioChem, 910482008.
  23. (a) D.E. Shalev, S.M. Chiacchiera, A.E. Radkowsky and E.M. Kosower, J. Org. Chem., 61, 1689 (1996); http://dx.doi.org/10.1021/jo950273q.;
  24. (b) H. Lebel and E.N. Jacobsen, Tetrahedron Lett., 40, 7303 (1999); http://dx.doi.org/10.1016/S0040-4039(99)01502-6.;
  25. (c) M.M. Elenkov, H.W. Hoeffken, L. Tang, B. Hauer and D.B. Janssen, Adv. Synth. Catal., 349, 2279 (2007); http://dx.doi.org/10.1002/adsc.200700146.
  26. (a) M. Taillefer, N. Inguimbert, L. Jager, K. Merzweiler and H.-J. Cristau, Chem. Commun., 40, 565 (1999); http://dx.doi.org/10.1039/a808641i.;
  27. (b) T. Sone, G. Lu, S. Matsunaga and M. Shibasaki, Angew. Chem. Int. Ed., 48, 1677 (2009); http://dx.doi.org/10.1002/anie.200805473.
  28. J.P. Majoral, A.M. Caminade and V. Maraval, Chem. Commun., 20, 2929 (2002); http://dx.doi.org/10.1039/b207194k.
  29. M. Taillefer, N. Inguimbert, L. Jager, K. Merzweiler and H.J. Cristau, Chem. Commun., 6, 565 (1999); http://dx.doi.org/10.1039/a808641i.
  30. A. Keniche, S. Bellifa, H. Hasaine, M.Z. Slimani and J. Kajima Mulengi, J. Nat. Prod., 4, 226 (2016).
  31. A. Keniche, M.Z. Slimani, J.I. Miranda, J.M. Aizpurua and J. Kajima Mulengi, Mediterranean J. Chem., 2, 620 (2013); http://dx.doi.org/10.13171/mjc.2.5.2013.01.12.23.
  32. A. Keniche, W. Drici, M.Z. Slimani, A. Mezrai and J. Kajima Mulengi, Mediterranean J. Chem., 2, 583 (2013); http://dx.doi.org/10.13171/mjc.2.4.2013.07.09.12.
  33. A. Keniche, A. Mezrai and J. Kajima Mulengi, The Open Conf. Proc. J., 2, 28 (2011).
  34. (a) G. Righi, E. Mandic, M. Naponiello, P. Bovicelli and I. Tirotta, Tetrahedron, 68, 2984 (2012); http://dx.doi.org/10.1016/j.tet.2012.02.029.;
  35. (b) P. Wipf and P.C. Fritch, J. Org. Chem., 59, 4875 (1994); http://dx.doi.org.10.1021/jo00096a033.