Main Article Content

Abstract

The quest for natural palatable cost-effective antioxidant, Trachyspermum ammi, a spice of Asian origin used by all kinds of race and ethnic groups of this continent and others, has became our area of interest. In this study, the antioxidant properties of the aqueous and methanolic extract of Trachyspermum ammi were thoroughly investigated by spectroscopic and electrochemical techniques. The priority of this study was to investigate and compare the changes in response to free radical and superoxide scavenging, iron chelation activities where all the observed chemical assay supported electrochemical behaviour in both extracts. The antioxidant potentiality in the traditional and standard spectroscopic processes showed the observations as, for the methanol extract 62.1 %, 51 %, 57 %, 36 % and for aqueous extract 55 %, 43 %, 46 %, 34.8 % iron chelating, hydrogen peroxide scavenging, DPPH free radical scavenging and superoxide scavenging activity respectively. The experimental results clearly inferred that the methanolic extract of Trachyspermum ammi has more antioxidant potentiality than the aqueous extract. This may be attributed due to the fact that antioxidant components in Trachyspermum ammi are more soluble in methanol than in water and therefore, methanolic extract exhibited more antioxidant potentiality.

Keywords

Trachyspermum ammi Antioxidants Iron chelation Free radical scavenging Electrochemical assay

Article Details

How to Cite
Basu, S., & Ganguly, J. (2016). A Comparative Bioefficacy of Aqueous and Methanolic Extract of Trachyspermum ammi Towards the Antioxidant Potentiality and Electrochemical Behaviour. Asian Journal of Organic & Medicinal Chemistry, 1(1), 17–21. https://doi.org/10.14233/ajomc.2016.AJOMC-P9

References

  1. S.A. Devi and D. Ganjewala, J. Herbs Spices Med. Plants, 17, 1 (2011); http://dx.doi.org/10.1080/10496475.2010.509659.
  2. N.V. Yanishlieva, E. Marinova and J. Pokorny, Eur. J. Lipid Sci. Technol., 108, 776 (2006); http://dx.doi.org/10.1002/ejlt.200600127.
  3. J. Bailey-Serres and R. Mittler, Plant Physiol., 141, 311 (2006); http://dx.doi.org/10.1104/pp.104.900191.
  4. R.S. Richards, L. Wang and H. Jelinek, Arch. Med. Res., 38, 94 (2007); http://dx.doi.org/10.1016/j.arcmed.2006.06.008.
  5. M.A. Ebrahimzadeh, S.M. Nabavi, S.F. Nabavi, F. Bahramian and A.R. Bekhradnia, Pak. J. Pharm. Sci., 23, 29 (2010).
  6. B. Halliwell and J.M.C. Gutteridge, Methods Enzymol., 186, 1 (1990); http://dx.doi.org/10.1016/0076-6879(90)86093-B.
  7. N. Narayanaswamy and K.P. Balakrishnan, Int. J. Pharm. Technol. Res., 3, 381 (2011).
  8. G.M. Reddy, V. Rao, D. Sarma, T.K. Reddy, P. Subramanyam and M.D. Naidu, J. Med. Plants Res., 6, 4082 (2012); http://dx.doi.org/10.5897/JMPR10.234.
  9. B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, edn 3, pp. 617-783 (1999).
  10. R. Bairwa, B.S. Rajawat and R.S. Sodha, Pharmacogn. Rev., 6, 56 (2012); http://dx.doi.org/10.4103/0973-7847.95871.
  11. J.H. Xiao, D.M. Xiao, D.X. Chen, Y. Xiao, Z.Q. Liang, J.J. Zhong, Evid. Based Complem. Altern. Med., Article ID 273435 (2012); http://dx.doi.org/10.1155/2012/273435.
  12. S. Keser, S. Celik, S. Turkoglu, O. Yilmaz and I. Turkoglu, Chem. J., 2, 9 (2012).
  13. M.S. Blois, Nature, 181, 1199 (1958). http://dx.doi.org/10.1038/1811199a0.
  14. L.F. Shyur, J.H. Tsung, J.H. Chen, C.Y. Chiu and C.P. Lo, Int. J. Appl. Sci. Eng., 3, 195 (2005).
  15. P.K. Jain and R.K. Agrawal, Asian J. Exp. Sci., 22, 213 (2008).
  16. E.A. Ainsworth and K.M. Gillespie, Nat. Protoc., 2, 875 (2007); http://dx.doi.org/10.1038/nprot.2007.102.
  17. S.M. Nabavi, M.A. Ebrahimzadeh, S.F. Nabavi, A. Hamidinia and A.R. Bekhradnia, Pharmacologyonline, 2, 560 (2008).
  18. W. Brand-Williams, M. Cuvelier and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995); http://dx.doi.org/10.1016/S0023-6438(95)80008-5.