Main Article Content

Abstract

The compounds 4a-m (functionalized chromene phenyl pyarazolone derivatives) were synthesized using ultrafine zirconia nanoparticles (ZrO2 NPs) by multi-component approach in water-ethanol as green solvent. Zirconia nanoparticles gave good catalytic activity for first four cycles of synthesized product. The structural and morphological characterizations of the as-prepared ZrO2 nanoparticles were performed by using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray microanalysis (EDS) spectroscopy and Ultraviolet visible (UV-visible) absorption spectroscopy. The morphological property revealed the formation of nanoscale particles. In this investigation we gave emphasis on the eco-friendly synthesis of chromene-phenyl pyrazolones derivatives using ZrO2 nanoparticles and water-ethanol. The expected results reveals the applicability of tuneable catalytic activity, reaction time and the reusability of ZrO2 nanoparticles even after several cycles.

Keywords

ZrO2 nanoparticles Green solvent Multi-component Chromene phenyl pyarazolones.

Article Details

How to Cite
A. Jadhav, S., V. Raut, A., Farooqui, M., Shinde, B., P. Sarkate, A., & K. Pardeshi, R. (2016). Zirconia Nanoparticles Catalyzed Multi- Component Synthesis of Functionalized Chromene-pyarazolone Derivatives. Asian Journal of Organic & Medicinal Chemistry, 1(3), 91–96. https://doi.org/10.14233/ajomc.2016.AJOMC-P27

References

  1. M.M. Kandeel, A.M. Kamal, E.K.A. Abdelall and H.A.H. Elshemy, Eur. J. Med. Chem., 59, 183 (2013); http://dx.doi.org/10.1016/j.ejmech.2012.11.011.
  2. N.K. Shah, N.M. Shah, M.P. Patel and R.G. Patel, J. Chem. Sci., 125, 525 (2013); http://dx.doi.org/10.1007/s12039-013-0421-y.
  3. J.M. Batista Jr., A.A. Lopes, D.L. Ambrósio, L.O. Regasini, M.J. Kato, V.S. Bolzani, R.M.B. Cicarelli and M. Furlan, Biol. Pharm. Bull., 31, 538 (2008); http://dx.doi.org/10.1248/bpb.31.538.
  4. R.K. Reddy, Y. Poornachandra, G. Jitender, G. Mallareddy, J.B. Nanubolu, C.G. Kumar and B. Narsaiah Bioorg. Med. Chem. Lett., 25, 2943 (2015); http://dx.doi.org/10.1016/j.bmcl.2015.05.041.
  5. M. Choi, Y.-S. Hwang, A.S. Kumar, H. Jo, Y. Jeong, Y. Oh, J. Lee, J. Yun, Y. Kim, S. Han, J.-K. Jung, J. Cho and H. Lee, Bioorg. Med. Chem. Lett., 24, 2404 (2014); http://dx.doi.org/10.1016/j.bmcl.2014.04.053.
  6. F.M. Abdelrazek, P. Metz, O. Kataeva, A. Jäger and S.F. El-Mahrouky, Arch. Pharm., 340, 543 (2007); http://dx.doi.org/10.1002/ardp.200700157.
  7. S.H. Cho, J.Y. Cho, S.E. Kang, Y.K. Hong and D.H. Ahn, J. Environ. Biol., 29, 479 (2008).
  8. L. Abrunhosa, M. Costa, F. Areias, A. Venâncio and F. Proença, J. Ind. Microbiol. Biotechnol., 34, 787 (2007); http://dx.doi.org/10.1007/s10295-007-0255-z.
  9. A.M.M. Nour, S.A. Khalid, M. Kaiser, R. Brun, W.E. Abdalla and T.J. Schmidt, J. Ethnopharmacol., 129, 127 (2010); http://dx.doi.org/10.1016/j.jep.2010.02.015.
  10. D.J. Ramón and M. Yus, Angew. Chem. Int. Ed., 44, 1602 (2005); http://dx.doi.org/10.1002/anie.200460548.
  11. A. Dömling, Chem. Rev., 106, 17 (2006); http://dx.doi.org/10.1021/cr0505728.
  12. D. Rocchi, J.F. González and J.C. Menéndez, Green Chem., 15, 511 (2013); http://dx.doi.org/10.1039/C2GC36221J.
  13. L.F. Tietze, Chem. Rev., 96, 115 (1996); http://dx.doi.org/10.1021/cr950027e.
  14. C.C.A. Cariou, G.J. Clarkson and M. Shipman, J. Org. Chem., 73, 9762 (2008); http://dx.doi.org/10.1021/jo801664g.
  15. R. Gasparova and M. Lacova, Molecules, 10, 937 (2005); http://dx.doi.org/10.3390/10080937.
  16. B.R. Madje, S.S. Shindalkar, M.N. Ware and M.S. Shingare, ARKIVOC, 14, 82 (2005); http://dx.doi.org/10.3998/ark.5550190.0006.e10.
  17. R.V. Hangarge, D.V. Jarikote and M.S. Shingare, Green Chem., 4, 266 (2002); http://dx.doi.org/10.1039/b111634g.
  18. B.K. Karale, V.P. Chavan, A.S. Mane, R.V. Hangarge, C.H. Gill and M.S. Shingare, Synth. Commun., 32, 497 (2002); http://dx.doi.org/10.1081/SCC-120002395.
  19. J. Ding, X. Li, J. Cao, L. Sheng, L. Yin and X. Xu, Sens. Actuators B, 202, 232 (2014); http://dx.doi.org/10.1016/j.snb.2014.05.061.
  20. L. Nakka, J.E. Molinari and I.E. Wachs, J. Am. Chem. Soc., 131, 15544 (2009); http://dx.doi.org/10.1021/ja904957d.
  21. K. Tomishige, Y. Ikeda, T. Sakaihori and K. Fujimoto, J. Catal., 192, 355 (2000); http://dx.doi.org/10.1006/jcat.2000.2854.
  22. Q.A. Islam, M.W. Raja, C. Satra and R.N. Basu, Bull. Mater. Sci., 38, 1473 (2015); http://dx.doi.org/10.1007/s12034-015-0977-x.
  23. E. Karapetrova, R. Platzer, J.A. Gardner, E. Torne, J.A. Sommers and W.E. Evenson, J. Am. Ceram. Soc., 84, 65 (2001); http://dx.doi.org/10.1111/j.1151-2916.2001.tb00609.x.
  24. Y. Zhao, W. Li, M. Zhang and K. Tao, Catal. Commun., 3, 239 (2002); http://dx.doi.org/10.1016/S1566-7367(02)00089-4.
  25. A. Saha, S. Payra and S. Banerjee, Green Chem., 17, 2859 (2015); http://dx.doi.org/10.1039/C4GC02420F.