Main Article Content

Abstract

3-Benzilidene quinolones have been synthesized by Knoevenagel condensation reactions starting from 1-methyl-4-hydroxyquinolinone with substituted aromatic aldehydes. Olefination of N-methyl 4- hydroxy quinolinone have been successfully carried out in aqueous medium under microwave irradiation method. An expeditious reaction was carried out under the microwave irradiation technique with good to excellent yield (92-98 %). The proposed method is environmentally benign, mild and simple protocol for the synthesis of chalcone of 4-hydroxy quinolondione (3a-l). The final products were characterized by 1H NMR, 13C NMR, Mass and elemental analysis as spectral property.

Keywords

Olefination 4-Hydroxyquinolondione Knoevenagel condensation reaction Microwave irradiation

Article Details

How to Cite
Jadhav, S., Vaidya, S., Pardeshi, R., & Shinde, B. (2017). Catalyst Free in Aqueous Medium Olefination of 1-Methyl-4-hydroxyquinolinone under Microwave Irradiation Method. Asian Journal of Organic & Medicinal Chemistry, 1(4), 101–105. https://doi.org/10.14233/ajomc.2016.AJOMC-P30

References

  1. S.-L. Zhang, Z.-S. Huang, Y.-M. Li, A.S.C. Chan and L.-Q. Gu, Tetrahedron, 64, 4403 (2008); https://doi.org/10.1016/j.tet.2008.02.052.
  2. B. Refouvelet, C. Guyon, Y. Jacquot, C. Girard, H. Fein, F. Bévalot, J.-F. Robert, B. Heyd, G. Mantion, L. Richert and A. Xicluna, Eur. J. Med. Chem., 39, 931 (2004); https://doi.org/10.1016/j.ejmech.2004.07.006.
  3. K. Arya and M. Agarwal, Bioorg. Med. Chem. Lett., 17, 86 (2007); https://doi.org/10.1016/j.bmcl.2006.09.082.
  4. A. van Oeveren, M. Motamedi, E. Martinborough, S. Zhao, Y. Shen, S. West, W. Chang, A. Kallel, K.B. Marschke, F.J. López, A. Negro-Vilar and L. Zhi, Bioorg. Med. Chem. Lett., 17, 1527 (2007); https://doi.org/10.1016/j.bmcl.2007.01.001.
  5. R. Kumabe and A. Nishino, Tetrahedron Lett., 45, 703 (2004); https://doi.org/10.1016/j.tetlet.2003.11.054.
  6. S. Chimichi, M. Boccalini, M.M.M. Hassan, G. Viola, F. Dall’Acqua and M. Curini, Tetrahedron, 62, 90 (2006); https://doi.org/10.1016/j.tet.2005.09.135.
  7. J. Jampilek, R. Musiol, M. Pesko, K. Kralova, M. Vejsova, J. Carroll, A. Coffey, J. Finster, D. Tabak, H. Niedbala, V. Kozik, J. Polanski, J. Csollei and J. Dohnal, Molecules, 14, 1145 (2009); https://doi.org/10.3390/molecules14031145.
  8. Y. Wu, Z. Chen, Y. Liu, L. Yu, L. Zhou, S. Yang and L. Lai, Bioorg. Med. Chem., 19, 3361 (2011); https://doi.org/10.1016/j.bmc.2011.04.039.
  9. D. Villemin, M. Benabdallah, N. Choukchou-Braham and M.B. Mostefa-Kara, Synth. Commun., 40, 3109 (2010); https://doi.org/10.1080/00397911003797916.
  10. J.H. Ye, K.Q. Ling Y. Zhang, N. Li and J.-H. Xu, J. Chem. Soc. Perkin Trans. 1, 2017 (1999); https://doi.org/10.1039/A902728I.
  11. (a) V. Nair and S. Kumar, Synlett, 1143 (1996); https://doi.org/10.1055/s-1996-5699. (b) V. Nair, K.V. Radhakrishnan, A.G. Nair and M.M. Bhadbhade, Tetrahedron Lett., 37, 5623 (1996); https://doi.org/10.1016/0040-4039(96)01172-0.
  12. (a) S.A. Jadhav, M.G. Shioorkar, O.S. Chavan, A.P. Sarkate, D.B. Shinde and R.K. Pardeshi, Eur. J. Chem., 6, 410 (2015); https://doi.org/10.5155/eurjchem.6.4.410-416.1312. (b) U.M. Lindstrom, Organic Reactions in Water: Principles, Strategies and Applications, Blackwell, Oxford (2007).
  13. (a) C.J. Li, Chem. Rev., 93, 2023 (1993); https://doi.org/10.1021/cr00022a004. (b) C.J. Li, Chem. Rev., 105, 3095 (2005); https://doi.org/10.1021/cr030009u.
  14. A. Chanda and V.V. Fokin, Chem. Rev., 109, 725 (2009); https://doi.org/10.1021/cr800448q.
  15. (a) J.D. Moseley and C.O. Kappe, Green Chem., 13, 794 (2011); https://doi.org/10.1039/c0gc00823k; (b) P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 57, 9225 (2001); https://doi.org/10.1016/S0040-4020(01)00906-1. (c) A. de la Hoz, Á. Díaz-Ortiz and A. Moreno, Chem. Soc. Rev., 34, 164 (2005); https://doi.org/10.1039/B411438H. (d) C.O. Kappe, Chem. Soc. Rev., 37, 1127 (2008); https://doi.org/10.1039/b803001b.
  16. (a) Y. Sarrafi, M. Sadatshahabi, K. Alimohammadi and M. Tajbakhsh, Green Chem., 13, 2851 (2011); https://doi.org/10.1039/c1gc15625j. (b) J.D. Moseley and C.O. Kappe, Green Chem., 13, 794 (2011); https://doi.org/10.1039/c0gc00823k. (c) F. Ke, Y. Qu, Z. Jiang, Z. Li, D. Wu and X. Zhou, Org. Lett., 13, 454 (2011); https://doi.org/10.1021/ol102784c. (d) S. De, S. Dutta and B. Saha, Green Chem., 13, 2859 (2011); https://doi.org/10.1039/c1gc15550d (e) X. Zhang, D. Ye, H. Sun, D. Guo, J. Wang, H. Huang, X. Zhang, H. Jiang and H. Liu, Green Chem., 11, 1881 (2009); https://doi.org/10.1039/b916124b.
  17. P.T. Anastas and J.C. Warner, Green Chemistry: Theory and Practice Oxford University Press: New York, p. 30 (1998).
  18. J.H. Clark, Green Chem., 8, 17 (2006); https://doi.org/10.1039/B516637N.
  19. S.A. Jadhav, M.G. Shioorkar, O.S.M.A. Baseer and R.K. Pardeshi, Elixir Org. Chem. Int. J., 90, 37490 (2016).
  20. S.A. Jadhav and R.K. Mazahar, Heterocycl. Lett., 2, 195 (2016).
  21. S.A. Jadhav, M.G. Shioorkar, O.S. Chavan, A.P. Sarkate, D.B. Shinde and R.K. Pardeshi, Eur. J. Chem., 6, 410 (2015); https://doi.org/10.5155/eurjchem.6.4.410-416.1312.
  22. S.A. Jadhav and R.K. Mazahar Farooqui, Elixir Org. Chem. Int. J., 92, 38824 (2016).
  23. S.A. Jadhav, A.V. Raut, M. Farooqui, D.B. Shinde, A.P. Sarkate and R.K. Pardeshi, Asian J. Org. Med. Chem., 1, 91 (2016); https://doi.org/10.14233/ajomc.2016.AJOMC-P28.

Most read articles by the same author(s)