Main Article Content

Abstract

The new solid charge transfer (CT) complexes using of diphenylthiocarbazone as donor with picric acid, chloranilic acid, 3,5-dinitrobenzoic acid and 2,3-dichloro-1,4-naphthaquinone as π-acceptors are reported. These complexes were characterized by elemental analysis and IR spectroscopic, spectrophotometric and conductimetric studies were used to detect the stoichiometry of the formed complexes, these complexes were found to be1:2 molar ratio. Benesi-Hildebrand and its modification methods in terms of molar extinction coefficient (εCT), formation constant (KCT), standard free energy (ΔG°), oscillator strength (f), resonance energy (RN), transition dipole moment (μ) and ionization potential (Ip) were calculated. Also, computational calculation for the charge transfer complex, the molecular modeling for charge transfer complex was performed by using CS Chem3D Ultra.

Keywords

Donor Conductance and Molecular modeling π-Acceptors Charge transfer complexes

Article Details

How to Cite
Ibrahim, A., & EL-Mossalamy, E.-S. (2017). Synthesis and Spectroscopic Studies of Novel Charge Transfer Complexes of Diphenylthiocarbazone with pi;-Acceptors. Asian Journal of Organic & Medicinal Chemistry, 2(1), 29–36. https://doi.org/10.14233/ajomc.2017.AJOMC-P63

References

  1. R.S. Mulliken, J. Am. Chem. Soc., 72, 600 (1950); https://doi.org/10.1021/ja01157a151.
  2. R. Foster, Organic Charge Transfer Complexes, Academic Press, New York, USA (1969).
  3. A.S.N. Murthy and A.P. Bhardwaj, Spectrochim. Acta A, 39, 415 (1983); https://doi.org/10.1016/0584-8539(83)80156-1.
  4. S.Y. Al-Qaradawi, H.S. Bazzi, A. Mostafa and E.M. Nour, Spectrochim. Acta A, 71, 1594 (2008); https://doi.org/10.1016/j.saa.2008.06.010.
  5. A. Mostafa and H.S. Bazzi, Spectrochim. Acta A, 79, 1613 (2011); https://doi.org/10.1016/j.saa.2011.05.021.
  6. T. Roy, K. Dutta, M.K. Nayek, A.K. Mukherjee, M. Banerjee and B.K. Seal, J.Chem. Soc., Perkin Trans. II, 2219 (1999); https://doi.org/10.1039/a810008j.
  7. F.P. Fla, J. Palou, J.R. Valero, C.D. Hall and P. Speers, J. Chem. Soc., Perkin Trans. II, 1925 (1991).
  8. D.K. Roy, A. Saha and A.K. Mukherjee, Spectrochim. Acta A, 61, 2017 (2005); https://doi.org/10.1016/j.saa.2004.08.001.
  9. A.M. Slifkin, Charge-Transfer Interaction of Biomolecules; Academic Press, New York (1971).
  10. K. Govindan, and A. Ray, Arabian J. Sci. Eng., 27, 157 (2002).
  11. E. Karaca, H.K. Can, U. Bozkaya and N.Ö. Pekmez, Chem. Phys. Chem., 17, 2056 (2016); https://doi.org/10.1002/cphc.201600161.
  12. S.Y. Al-Qaradawi, A. Mostafa and H.S. Bazzi, J. Mol. Struct., 1037, 209 (2013); https://doi.org/10.1016/j.molstruc.2013.01.005.
  13. L.M. Al-Harbi, E.H. El-Mossalamy, A.Y. Obaid and A.H. Al-Jedaani, Spectrochim. Acta A, 120, 25 (2014); https://doi.org/10.1016/j.saa.2013.09.047.
  14. S.R. Bakir, A.A.S. Al-Hamdani and A.J. Jara, Diyala J. Sci., 9, 2 (2013).
  15. D.A. Skoog, Principle of Instrumental Analysis; Saunders College Publishing, New York, USA, edn 3 (1985).
  16. A. El-Kourashy, Spectrochim. Acta A, 37, 399 (1981); https://doi.org/10.1016/0584-8539(81)80110-9.
  17. E.M. Voigt and C. Reid, J. Am. Chem. Soc., 86, 3930 (1964); https://doi.org/10.1021/ja01073a005.
  18. R. Rathore, S.V. Lindeman and J.K. Kochi, J. Am. Chem. Soc., 119, 9393 (1997); https://doi.org/10.1021/ja9720319.
  19. G. Aloisi and S. Pignataro, J. Chem. Soc., Faraday Trans., 69, 534 (1973); https://doi.org/10.1039/f19736900534.
  20. G. Briegleb, Angew. Chem., 76, 326 (1964); https://doi.org/10.1002/ange.19640760804.
  21. R.F. Romanent, Proc. India Acad., 84, 15 (1974).
  22. D.C. Wheat, Hand Book of Chemistry and Physics, CRC Press, edn 15 (1969).
  23. G. Saito and Y. Matsunaga, Bull. Chem. Soc., 44, 1788 (1971); https://doi.org/10.1246/bcsj.44.1788.
  24. M. Gaber, M.A. El-Morsi and M. AbdEl-Ghafar, J. Chem. Soc. Pak., 10, 2 (1988).
  25. G. Briegleb and J.Z. Czekalla, Z. Phys. Chem., 24, 237 (1960).
  26. M. Arslan and H. Duymus, Spectrochim. Acta A, 67, 573 (2007); https://doi.org/10.1016/j.saa.2006.06.045.
  27. K.M. Al-Ahmary, M.M. Habeeb and E.A. Al-Solmy, J. Mol. Liq., 162, 129 (2011); https://doi.org/10.1016/j.molliq.2011.06.015.
  28. A.S. Al-Attas, M.M. Habeeb and D.S. Al-Raimi, J. Mol. Struct., 928, 158 (2009); https://doi.org/10.1016/j.molstruc.2009.03.025.
  29. R.S. Mulliken, J. Am. Chem. Soc., 74, 811 (1952); https://doi.org/10.1021/ja01123a067.
  30. D.F. Ba’amer, E.H. El-Mossalamy, L.M. Al-Harbi and A.Y. Obaid, Global Adv. Res. J. Microbiol., 3, 133 (2014).
  31. L.J. Bellamy, The Infrared Spectra of Complex Molecules; Chapman & Hall, London, p. 290 (1975).
  32. R. Bharathikannan, A. Chandramohan, M.A. Kandhaswamy, J. Chandrasekaran, R. Renganathan and V. Kandavelu, Cryst. Res. Technol., 43, 683 (2008); https://doi.org/10.1002/crat.200711114.
  33. A.S. Gaballa, S.M. Teleb and E. Nour, J. Mol. Struct., 1024, 32 (2012); https://doi.org/10.1016/j.molstruc.2012.04.092.
  34. A.A. Adam, J. Mol. Struct., 1030, 26 (2012); https://doi.org/10.1016/j.molstruc.2012.07.017.
  35. N. Singh and A. Ahmad, Can. J. Anal. Sci., 54, 11 (2009).