Main Article Content

Abstract

A potential non-linear optical (NLO) material N-(4-chlorobenzylidene)- 4-methoxyaniline (CBMA) was synthesized by the condensation reaction between p-chlorobenzaldehyde and p-methoxyaniline. The CBMA crystal was grown by slow evaporation method for the period of 30 days. The optimized geometry and structural features of the title compound CBMA were thoroughly described with the FT-Raman and FT-IR spectra calculated by the HF/DFT/B3LYP methods using 6-311G(d,p) as basis set. The theoretical, experimental FT-IR and FT-Raman spectra were compared. A natural bond orbital (NBO) study was carried out to analyze the effects of intramolecular charge transfer. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer were discussed. The first order hyper polarizability (β0) and related properties (β, α0 and μ) of CBMA were calculated. Molecular electrostatic potential was studied using theoretical calculations. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures were also calculated.

Keywords

N-(4-Chlorobenzylidene)-4-methoxyaniline HF DFT/B3LYP Molecular electrostatic potential Hyperpolarizability

Article Details

How to Cite
Louis, G., & Haja Hameed, A. (2017). Synthesis, Structural, Spectral, Natural Bond Orbital, Thermodynamic Properties and First Order Hyperpolarizability Analysis of N-(4-Chlorobenzylidene)-4-methoxyaniline. Asian Journal of Organic & Medicinal Chemistry, 2(4), 169–181. https://doi.org/10.14233/ajomc.2017.AJOMC-P88

References

  1. F.F. Jian, R.R. Zhuang, K.F. Wang, P.S. Zhao and H. Xiao, Acta Cryst., E62, o3198 (2006); https://doi.org/10.1107/S1600536806025074.
  2. M.T.H. Tarafder, M.A. Ali, D.J. Wee, K. Azahari, S. Silong and K. Crouse, Transition Met. Chem., 25, 456 (2000); https://doi.org/10.1023/A:1007062409973.
  3. P. Deschamps, P.P. Kulkarni and B. Sarkar, Inorg. Chem., 42, 7366 (2003); https://doi.org/10.1021/ic034760x.
  4. Z. Rozwadowski, E. Majewski, T. Dziembowska and P.E. Hansen, J. Chem. Soc. Perkin Trans. II, 2809 (1999); https://doi.org/10.1039/a903200b.
  5. S. Kumar, D.G. Ladha, P.C. Jha and N.K. Shah, Int. J. Corros., Article ID 819643 (2013); https://doi.org/10.1155/2013/819643.
  6. D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987.
  7. P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, Wiley, New York (1991).
  8. P. Srinivasan, T. Kanagasekaran and R. Gopalakrishnan, Cryst. Growth Des., 8, 2340 (2008); https://doi.org/10.1021/cg701143n.
  9. G. Zhang, M. Liu, D. Xu, D. Yuan, W. Sheng and J. Yao, J. Mater. Sci. Lett., 19, 1255 (2000); https://doi.org/10.1023/A:1006733831655.
  10. R.W. Munn and C.N. Ironiside, Principles and Applications of Non- Linear Optical Materials, Chapman and Hall, London (1993).
  11. K. Naseema, V. Rao, K.V. Sujith and B. Kalluraya, Curr. Appl. Phys., 10, 1236 (2010); https://doi.org/10.1016/j.cap.2010.02.050.
  12. S. Leela, K. Ramamurthi and G. Bhagavannarayana, Spectrochim. Acta A, 74, 78 (2009); https://doi.org/10.1016/j.saa.2009.05.028.
  13. S. Leela, T.D. Rani, A. Subashini, S. Brindha, R.R. Babu and K. Ramamurthi, Arab. J.Chem., 10(Suppl.2), S3974 (2017); https://doi.org/10.1016/j.arabjc.2014.06.008.
  14. K. Srinivasan, K. Sankaranarayanan, S. Thangavelu and P. Ramasamy, J. Cryst. Growth, 212, 246 (2000); https://doi.org/10.1016/S0022-0248(00)00300-6.
  15. A. Subashini, G. Bhagavannarayana and K. Ramamurthi, Spectrochim. Acta A, 82, 91 (2011); https://doi.org/10.1016/j.saa.2011.07.004.
  16. X.Y. Ren, Y.F. Ding and F.F. Jiana, Acta Cryst., E64, o1793 (2008); https://doi.org/10.1107/S1600536808026111.
  17. P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
  18. A. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
  19. C. Lee, W. Yang and R.G. Parr, Phys. Rev., B37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT (2009).
  21. E.D. Glendening, C.R. Landis and F. Weinhold, Comput. Mol. Sci., 2, 1 (2012); https://doi.org/10.1002/wcms.51.
  22. D.A. Kleinman, Phys. Rev., 126, 1977 (1962); https://doi.org/10.1103/PhysRev.126.1977.
  23. S. Shen, G.A. Guirgis and J.R. Durig, Struct. Chem., 12, 33 (2001); https://doi.org/10.1023/A:1009258017813.
  24. D. Michalska and R. Wysokinski, Chem. Phys. Lett., 403, 211 (2005); https://doi.org/10.1016/j.cplett.2004.12.096.
  25. L.E. Sutton, Tables of Interatomic Distances, Chemical Society, London (1958).
  26. S. Muthu, G. Ramachandran and J. Uma maheswari, Spectrochim. Acta A, 93, 214 (2012); https://doi.org/10.1016/j.saa.2012.02.107.
  27. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, NewYork (1969).
  28. B.C. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press, Washington DC (1999).
  29. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
  30. A.S. El-Shahawy, S.M. Ahmed and N.K. Sayed, Spectrochim. Acta A, 66, 143 (2007); https://doi.org/10.1016/j.saa.2006.02.034.
  31. R.M. Silverstein, G.C. Bassler and T.C. Morril, Spectrometric Identi-fication of Organic Compounds, John Wiley & Sons Inc., Singapore, edn 5 (1991).
  32. E.F. Mooney, Spectrochim. Acta A, 19, 877 (1963); https://doi.org/10.1016/0371-1951(63)80175-7.
  33. N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Boston, edn 3 (1990).
  34. P. Pazdera, H. Divisová, H. Havlisová and P. Borek, Molecules, 5, 189 (2000); https://doi.org/10.3390/50200189.
  35. H. Divisová, H. Havlisová, P. Borek and P. Pazdera, Molecules, 5, 1166 (2000); https://doi.org/10.3390/51001166.
  36. M. Snehalatha, C. Ravikumar, I.H. Joe, N. Sekar and V.S. Jayakumar, Spectrochim. Acta A, 72, 654 (2009); https://doi.org/10.1016/j.saa.2008.11.017.
  37. K. Govindarasu, E. Kavitha and N. Sundaraganesan, Spectrochim. Acta A, 133, 417 (2014); https://doi.org/10.1016/j.saa.2014.06.040.
  38. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot and A. Collet, J. Am. Chem. Soc., 116, 2094 (1994); https://doi.org/10.1021/ja00084a055.
  39. V.M. Geskin, C. Lambert and J. Bredas, J. Am. Chem. Soc., 125, 15651 (2003); https://doi.org/10.1021/ja035862p.
  40. M. Karabacak, Z. Cinar and M. Cinar, Spectrochim. Acta A, 85, 241 (2012); https://doi.org/10.1016/j.saa.2011.10.001.
  41. K. Govindarasu and E. Kavitha, Spectrochim. Acta A, 122, 130 (2014); https://doi.org/10.1016/j.saa.2013.10.122.
  42. T. Vijayakumar, I.H. Joe, C.P. Reghunadhan Nair and V.S. Jayakumar, Chem. Phys., 343, 83 (2008); https://doi.org/10.1016/j.chemphys.2007.10.033.
  43. M.A. Palafox, Int. J. Quantum Chem., 77, 661 (2000); https://doi.org/10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J.
  44. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York (1976).
  45. T. Karakurt, M. Dincer, A. Cetin and M. Sekerci, Spectrochim. Acta A, 77, 189 (2010); https://doi.org/10.1016/j.saa.2010.05.006.
  46. C.H. Choi and M. Kertesz, J. Phys. Chem. A, 101, 3823 (1997); https://doi.org/10.1021/jp970620v.
  47. D.F.V. Lewis, C. Ioannides and D. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243.
  48. V. Balachandran and V. Karunakaran, Spectrochim. Acta A, 106, 284 (2013); https://doi.org/10.1016/j.saa.2012.12.070.
  49. P. Politzer and J.S. Murray, Theor. Chem. Acc., 108, 134 (2002); https://doi.org/10.1007/s00214-002-0363-9.
  50. R. Parr, L. Szentpaly and S. Liu, Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
  51. P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u.
  52. K. Govindarasu and E. Kavitha, J. Mol. Struct., 1088, 70 (2015); https://doi.org/10.1016/j.molstruc.2015.02.008.
  53. T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2.
  54. D.A. Dhas, I.H. Joe, S.D.D. Roy and T.H. Freeda, Spectrochim. Acta A, 77, 36 (2010); https://doi.org/10.1016/j.saa.2010.04.020.
  55. J.B. Ott and J. Boerio-Goates, Chemical Thermodynamics: Advanced Applications, Calculations from Statistical Thermodynamics, Academic Press (2000).