

www.asianpubs.org

# Synthesis, Structural, Spectral, Natural Bond Orbital, Thermodynamic Properties and First Order Hyperpolarizability Analysis of N-(4-Chlorobenzylidene)-4-methoxyaniline

Golda Louis and A.S. Haja Hameed<sup>™</sup>

# ABSTRACT

# Asian Journal of Organic & Medicinal Chemistry

Volume: 2 Year: 2017 Issue: 4 Month: October–December pp: 169–181 DOI: https://doi.org/10.14233/ajomc.2017.AJOMC-P88

Received: 8 June 2017 Accepted: 28 November 2017 Published: 29 December 2017

A potential non-linear optical (NLO) material N-(4-chlorobenzylidene)-4-methoxyaniline (CBMA) was synthesized by the condensation reaction between p-chlorobenzaldehyde and p-methoxyaniline. The CBMA crystal was grown by slow evaporation method for the period of 30 days. The optimized geometry and structural features of the title compound CBMA were thoroughly described with the FT-Raman and FT-IR spectra calculated by the HF/DFT/B3LYP methods using 6-311G(d,p) as basis set. The theoretical, experimental FT-IR and FT-Raman spectra were compared. A natural bond orbital (NBO) study was carried out to analyze the effects of intramolecular charge transfer. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer were discussed. The first order hyper polarizability ( $\beta_0$ ) and related properties ( $\beta$ ,  $\alpha_0$  and  $\mu$ ) of CBMA were calculated. Molecular electrostatic potential was studied using theoretical calculations. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures were also calculated.

# **KEYWORDS**

N-(4-Chlorobenzylidene)-4-methoxyaniline, HF, DFT/B3LYP, Molecular electrostatic potential, Hyperpolarizability.

## **INTRODUCTION**

Schiff bases have been used as ligands in the field of coordination chemistry [1] and have antimicrobial [2] and anticancer applications [3]. Schiff base compounds make an interest by the formation of intramolecular hydrogen bonds by electron coupling between acid-base centers [4] and corrosion inhibition mechanism [5]. The electron donor and the acceptor groups connected through a  $\pi$  conjugated chain constitute a potential non-linear optical (NLO) or an electro-optical material. The synthesis of organic molecules exhibiting NLO properties has been encouraged by their optical and electronic applications [6,7]. Organic molecules with significant non-linear optical activity generally consist of  $\pi$ -electron conjugated moiety which is substituted by an electron donor group on one end of the conjugated structure and an acceptor group on the other end. It makes a push-pull conjugated structure. Both ends of the  $\pi$ -bond system functionalizing with appropriate electron donor and acceptor groups lead to an increase in optical non-

#### Author affiliations:

PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli-620 020, India

 $^{\bowtie}$ To whom correspondence to be addressed:

Fax: +91-431-233145 Tel: +91 431 2331135; +91 431 2332235 E-mail: hajahameed2001@gmail.com

Available online at: http://ajomc.asianpubs.org

linearity [8-11]. For effective second harmonic generation (SHG), one requires a highly polarizable molecular system with asymmetric charge distribution in the molecule. Benzylideneaniline (BA) derivatives are successful examples for preparing high non-linear optically active crystals [12-15]. Among many NLO crystals, N-(4-chlorobenzylidene)-4-methoxyaniline (CBMA) is one of benzylideneaniline derivative NLO crystals, which belongs to the non-centrosymmetric orthorhombic space group Pna2<sub>1</sub>. The cell dimensions [16] are a = 6.11 Å, b =7.34 Å, c =27.47 Å and V = 1230.9 Å<sup>3</sup>.

In this paper, we have performed geometry optimization calculations for the CBMA molecule by using HF and DFT/ B3LYP methods with 6-311G(d,p) basis set. We have accomplished an experimental/theoretical analysis of the vibrational spectra. Also, the paper explores the molecular dynamics and the structural parameters that concern the chemical behaviour.

## EXPERIMENTAL

**Synthesis:** N-(4-Chlorobenzylidene)-4-methoxyaniline (CBMA) was synthesized by the condensation reaction between *p*-chlorobenzaldehyde and *p*-methoxyaniline in equimolar ratio [16]. The reaction mixture was refluxed for 8 h and the solution was filtered using a Whatmann filter paper and the resulting product N-(4-chlorobenzylidene)-4-methoxyaniline was obtained. The schematic diagram of synthesizing CBMA material is shown in Fig. 1. The purity of the synthesized salt was improved by successive recrystallization processes in ethanol and acetone (1:1) at room temperature. A transparent single crystal grown for the period of 30 days by slow evaporation at room temperature is shown in Fig. 2.



Fig. 1. Schematic of synthesizing CBMA material



Fig. 2. Grown crystal of CBMA

**FT-IR and FT-Raman spectral measurements:** The FT-IR spectrum of CBMA sample was recorded in the range of 4000-400 cm<sup>-1</sup> by Perkin Elmer, RXI model FT-IR spectrometer using KBr pellet technique. FT-Raman spectrum of CBMA sample was recorded using 1064 nm line of Nd:YAG laser as the excitation wavelength in the region 3500-50 cm<sup>-1</sup> by BRUKER RFS 27: FT-Raman spectrometer.

**Computational details:** The optimization of the molecular structure and its vibrational harmonic frequencies of CBMA were calculated using HF/DFT method [17] with the Becke's three-parameter hybrid functional (B3) [18] for the exchange part and the Lee-Yang-Parr (LYP) correlation function [19] using the Gaussian 09 program [20]. At first, the molecule N-(4-chlorobenzylidene)-4-methoxyaniline was optimized. Then the optimized structural parameters were calculated. The vibrational wavenumber assignments were done. The calculated IR spectrum of CBMA was plotted using Origin Pro 8.1 and compared with the experimental FT-IR spectrum.

The natural bonding orbital (NBO) calculations [21] were performed using Gaussian 09 [20] to understand different second order interactions between the vacant orbitals of one subsystem and filled orbitals of another subsystem. UV-visible spectra, electronic transitions, excitation energies and oscillator strengths were computed with the time-dependent DFT method. The HOMO and LUMO energies were determined. To investigate the reactive sites of the title compound, the MEP was evaluated using the DFT/B3LYP method. The contribution of the group to a molecular orbital was analyzed using Mulliken population analysis. The first order hyperpolarizability ( $\beta_0$ ) and related properties ( $\beta$ ,  $\alpha_0$  and  $\mu$ ) were calculated using 6-311G(d,p) basis set based on the finite-field approach [22]. The thermodynamic functions such as heat capacity, entropy and enthalpy were analyzed for different temperatures.

**Prediction of Raman intensities:** The measured Raman spectrum is given by the equation [23,24]. The Raman activities (Si) calculated by Gaussian 09 program [20] have been converted to corresponding Raman intensities ( $I^R$ ). The theoretical Raman intensity ( $I^R$ ) that simulates is given by

$$I_i^{R} = C(v_0 - v_i)^4 v_i^{-1} B_i^{-1} S_i$$
(1)

where  $B_i$  is a temperature factor for the intensity contribution of excited vibrational states and the excitation frequency  $v_0$ = 9398.5 cm<sup>-1</sup> corresponds to the wavelength of 1064 nm of Nd: YAG laser,  $v_i$  is the frequency of normal mode (cm<sup>-1</sup>), while  $S_i$  is the Raman scattering activity of the normal mode Qi.  $I_i^R$ is given in arbitrary units (C is a constant equal 10<sup>-12</sup>). Theoretical Raman intensities have been computed assuming  $B_i$  equal to 1. The theoretical Raman spectra have been calculated using HF and DFT/B3LYP/6-311G(d,p).

#### **RESULTS AND DISCUSSION**

**Structural analysis:** The optimized molecular structure of N-(4-chlorobenzylidene)-4-methoxyaniline (CBMA) is shown in Fig. 3. The geometrical parameters (bond lengths, bond angles and dihedral angles) obtained by the HF and DFT-B3LYP/6-311G(d,p) basis set calculations are represented in Table-1. From Table-1, most of the bond lengths are slightly longer than the experimental values and the bond angles are

| Asian Journal of Organic & Medicinal Chemistry 17 | 71 |
|---------------------------------------------------|----|
|---------------------------------------------------|----|

| Bendi<br>hength         DPT<br>(Ref. 16)         HF         EXP.<br>[Ref. 16]         Dihedral angle         B3LYP         HF           C1-C2         1.395         1.378         C2-C1-C6         119.99         108.46         119.42         C6-C1-C2-C3         0.032         0.1015           C1-C6         1.394         1.378         1.371         C2-C1-H7         119.99         100.238         120.30         G5-C1-C2-H8         179.97         179.97           C2-C3         1.394         1.386         C1-C2-H8         120.00         120.27         121.10         HT7-C1-C2-C3         -179.97         179.93           C2-C14         1.399         1.393         1.386         C3-C2-H8         120.01         119.93         119.90         127.77         179.97         79.98           C3-C12         1.340         1.378         1.373         C2-C3-C1         120.01         119.97         117-C1-C6-C5         117.97         77.98           C4-C5         1.394         1.378         1.373         C2-C3-C4         119.99         119.95         119.97         117-C1-C6-C5         117.97         77.98           C5-H10         1.091         1.073         0.33         C3-C4-H9         120.00         121.03         C1-C2-                                                                                                                                                                                                                                         |                | TABLE-1<br>CALCULATED OPTIMIZED PARAMETER VALUES OF CBMA [BOND LENGTHS (Å) AND ANGLES (°) |       |                   |             |        |        |                   |                                                                               |         |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------|-------|-------------------|-------------|--------|--------|-------------------|-------------------------------------------------------------------------------|---------|-----------------|
| C1-C2         1.385         1.378         C2C1-C6         19.99         118.86         119.42         C6C1-C2         0.032         0.015           C1-C6         1.394         1.378         0.2C1-H7         119.99         120.28         120.30         H7-C1-C2-C3         1.79.97         179.97           C2-18         1.099         1.076         0.930         C6-C1-H7         120.00         120.97         121.10         H7-C1-C2-C3         1.79.97         179.97           C2-148         1.099         1.073         0.330         C3-C2         1.88         0.035         C2-C1-6C         0.014         0.005           C3-C2         1.540         1.477         1.463         C2-C3-C1         10.99         119.93         119.95         C2-C1-6C         119.97         17-C1-C6-C5         119.97         17-C1-C6-C5         119.97         17-C1-C6-C5         119.97         17-C1-C6-C5         119.97         17-C1-C7-C1         11.90.05         0.025         C2-C3-C4         10.005         0.055         C2-C3-C4         10.005         0.055         C2-C3-C4         10.005         0.055         C2-C3-C4         10.99         17.99         17.99         17.99         17.99         17.99         17.99         17.99         17.99 </th <th>Bond<br/>length</th> <th>DFT<br/>B3LYP</th> <th>HF</th> <th>EXP.<br/>[Ref. 16]</th> <th>Bond angle</th> <th>B3LYP</th> <th>HF</th> <th>EXP.<br/>[Ref. 16]</th> <th>Dihedral angle</th> <th>B3LYP</th> <th>HF</th> | Bond<br>length | DFT<br>B3LYP                                                                              | HF    | EXP.<br>[Ref. 16] | Bond angle  | B3LYP  | HF     | EXP.<br>[Ref. 16] | Dihedral angle                                                                | B3LYP   | HF              |
| C1-C6         1.394         1.378         1.371         C2-C1+P7         11999         120.84         120.30         C6-C1-2H8         17999         1799           C2-C3         1.394         1.386         0.381         C1-C2-C3         12000         120.97         121.10         H7-C1-C2-C3         0.001         0.005           C2-H8         1.099         1.076         0.930         C1-C2-H8         11998         119.50         C2-C1-C6-C5         10.014         0.005           C3-C4         1.394         1.373         0.730         C2-C3-C4         11999         119.51         118.70         H7-C1-C6-C5         179.97         79.86           C4-C5         1.394         1.373         0.93         C2-C3-C12         119.99         12.142         121.40         C1-C2-C3-C12         179.96         79.89           C5-C6         1.395         1.386         1.388         C3-C4-C6         120.00         119.60         H8-C2-C3-C12         -0.014         0.035           C5-C11         1.099         1.073         0.93         C3-C4-H9         119.98         119.06         H8-C2-C3-C12         -0.014         0.035           C5-C11         1.099         1.076         1.743         1.732                                                                                                                                                                                                                                                                   | C1-C2          | 1.395                                                                                     | 1.385 | 1.378             | C2-C1-C6    | 119.99 | 118.86 | 119.42            | C6-C1-C2-C3                                                                   | 0.032   | ).0115          |
| C1+H7         1.099         1.073         0.930         C6-C1+H7         120.00         120.28         120.30         H7-C1-C2-G3         -17997         -1799           C2+G3         1.394         1.386         1.381         C1+C2-G3         12000         120.07         121.01         H7-C1+C2-H8         0.005         0.005           C3-C4         1.395         1.386         C3-C2+H8         120.01         119.59         C2-C1-C6-C11         -0.005         0.005           C3-C2         1.540         1.477         1.463         C2-C3-C42         119.99         119.56         118.70         H7-C1-C6-C5         -0.005         0.005           C4+H9         1.099         1.073         0.93         C4-C5         119.99         119.66         118.60         C1-C2-C3-C4         -0.005         0.0045           C5-H10         1.099         1.073         0.93         C3-C4-H9         120.02         120.39         119.50         C2-C3-C4-C5         -179.99         -179.99         -179.99         -179.99         -179.99         -179.99         -179.99         -179.99         -179.99         -178.9         -179.99         -178.9         -179.99         -178.9         -179.99         178.9         -179.99         178.9 <td>C1-C6</td> <td>1.394</td> <td>1.378</td> <td>1.371</td> <td>C2-C1-H7</td> <td>119.99</td> <td>120.84</td> <td>120.30</td> <td>C6-C1-C2-H8</td> <td>179.95</td> <td>79.94</td>                                                    | C1-C6          | 1.394                                                                                     | 1.378 | 1.371             | C2-C1-H7    | 119.99 | 120.84 | 120.30            | C6-C1-C2-H8                                                                   | 179.95  | 79.94           |
| C2-C3         1.394         1.386         C1-C2-C3         120.00         121.10         H7-C1-C2-H8         0.06         0.085           C3-C4         1.395         1.393         1.386         C1-C2-H8         119.98         119.50         C2-C1-C6-C5         0.014         0.005           C3-C12         1.530         1.477         1.463         C2-C3-C12         120.01         119.93         119.50         C2-C1-C6-C5         -179.97         79.98           C3-C12         1.395         1.386         0.337         C2-C3-C12         119.99         114.2         121.40         C1-C2-C3-C12         -0.056         0.045           C5-C6         1.395         1.386         0.33         C3-C4-L9         119.99         121.42         121.40         C1-C2-C3-C12         -0.046         0.035           C5-C6         1.395         1.386         C3-C4-C5         119.99         120.02         119.50         C2-C3-C4-C5         -0.044         0.032           C12-H13         1.025         L2.51         L2.55         L2.034         119.51         C2-C3-C12         -0.141         0.032           C12-H13         1.039         L1.345         C4-C3-C12         110.334         L3.83         L4.05                                                                                                                                                                                                                                                                    | C1-H7          | 1.099                                                                                     | 1.073 | 0.930             | C6-C1-H7    | 120.00 | 120.28 | 120.30            | H7-C1-C2-C3                                                                   | -179.97 | .179.9          |
| C2-H8         1.099         1.076         0.930         C1-C2-H8         119.98         119.50         C2-C1-C6-C5         0.014         0.005           C3-C4         1.395         1.336         C3-C2+H8         120.01         119.93         119.50         C2-C1-66-C1         179.97         79.98           C4-C5         1.394         1.373         0.93         C4-C3-C12         119.91         119.51         119.75         H7-C1-66-C5         1-79.97         79.98           C4-C5         1.395         1.386         1.388         C2-C4-C5         119.99         121.42         121.40         C1-C2-C3-C1         -0.056         0.045           C5-H10         1.099         1.073         0.93         C3-C4-H9         119.99         120.33         120.07         C1-C2-C3-C1         -19.96         79.89         717.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.99         719.95         72.72.74.74         71.72.91         71.99         719.95 <td>C2-C3</td> <td>1.394</td> <td>1.386</td> <td>1.381</td> <td>C1-C2-C3</td> <td>120.00</td> <td>120.97</td> <td>121.10</td> <td>H7-C1-C2-H8</td> <td>-0.05</td> <td>0.035</td>                                             | C2-C3          | 1.394                                                                                     | 1.386 | 1.381             | C1-C2-C3    | 120.00 | 120.97 | 121.10            | H7-C1-C2-H8                                                                   | -0.05   | 0.035           |
| C3-C4         1.395         1.393         1.386         C3-C2-H8         120.01         119.50         C2-C1-C6-C111         179.98         79.98           C4-C5         1.394         1.373         C2-C3-C12         120.01         119.51         118.70         H7-C1-C6-C111         -0.005         0.005           C4-H9         1.099         1.073         0.93         C4-C3-C12         119.99         121.42         121.40         C1-C2-C3-C4         -0.005         0.005           C5-H0         1.099         1.073         0.93         C3-C4-H9         120.33         110.06         H8-C2-3-C4         -179.97         -179.97           C12-H13         1.098         1.086         0.93         C4-C5-C6         120.01         119.31         119.00         E2-C3-C4         -0.044         0.034           C12-N14         1.232         1.235         1.235         C4-C5-H10         120.01         120.75         120.30         C2-C3-C4-C5         -0.034         0.064           C15-C16         1.395         1.330         1.386         C1-C6-C5         120.00         12.25         12.05         C2-C3-C4-C5         0.01876         12.01           C15-C16         1.395         1.385         1.386         <                                                                                                                                                                                                                                                       | C2-H8          | 1.099                                                                                     | 1.076 | 0.930             | C1-C2-H8    | 119.98 | 119.08 | 119.50            | C2-C1-C6-C5                                                                   | 0.014   | 0.005           |
| C3-C12         1.540         1.477         1.463         C2-C3-C12         120.00         119.50         119.57         119.57         177-C1-C6-C5         -179.97         79.98           C4+C5         1.394         1.373         0.93         C4-C3-C12         120.01         119.51         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         119.57         120.57         C4-C3-C4         119.98         119.60         H8-C2-C3-C12         -0.144         0.032           C12-L11         1.698         1.098         1.046         0.93         C4-C5-C6         120.00         120.37         120.30         C2-C3-C4-19         -179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.50         13                                                                                                                                                                                                          | C3-C4          | 1.395                                                                                     | 1.393 | 1.386             | C3-C2-H8    | 120.01 | 119.93 | 119.50            | C2-C1-C6-Cl11                                                                 | 179.98  | 79.96           |
| C4-ES       1.394       1.378       C1-23-C12       120.01       119.87       H19-7C-C6-C111       -0.005       0.0051         C5-C6       1.395       1.386       C1-305       1.388       C1-2C-C2-C12       179.96       79.89         C5-H10       1.009       1.073       0.93       C3-C4-H9       119.99       120.42       120.70       C1-C2-C3-C12       179.96       79.89         C5-H10       1.009       1.073       0.93       C3-C4-H9       119.91       119.60       H8-C2-C3-C12       -0.014       0.003         C12-N14       1.225       1.225       C4-C5-H10       120.01       120.30       C2-C3-C4-C5       -179.98       179.89         C15-C17       1.409       1.415       C6-C5-H10       120.01       121.25       122.55       C2-C3-C12-H13       0.474       10.98         C16-C18       1.394       1.380       1.387       C3-C12-H13       114.56       119.55       C2-C3-C12-H13       0.474       10.98         C16-C18       1.099       1.075       0.930       C3-C12-H14       119.27       119.55       C2-C3-C12-H13       -179.98       178.90         C16-C18       1.004       1.004       1.004       1.004       1.004                                                                                                                                                                                                                                                                                                                                  | C3-C12         | 1.540                                                                                     | 1.477 | 1.463             | C2-C3-C4    | 119.99 | 119.06 | 118.70            | H7-C1-C6-C5                                                                   | -179.97 | 79.98           |
| C4-H9       1.099       10.73       0.93       C4C3-C12       119.99       121.42       121.40       C1-C2-C3-C4       -0.086       0.0485         CS-H10       1.099       1.073       0.03       C3-C4-H9       119.99       119.60       H8-C2-C3-C12       -179.97       -179.97         C6-C111       1.760       1.743       1.732       C5-C4-H9       120.02       120.39       119.60       H8-C2-C3-C12       -0.141       0.032         C12-H13       1.098       1.086       0.93       C4-C5-C6       120.00       119.31       119.50       C2-C3-C4-E5       0.034       0.064         C12-H14       1.325       1.251       C4-C5-C6       120.00       119.31       119.55       C2-C3-C4-C5       0.1876       11207         C15-C16       1.395       1.380       1.387       C5-C6-C11       110.09       119.55       C2-C3-C12-H13       0.474       178.98         C16-C18       1.394       1.380       1.387       C3-C12-H14       112.55       C2-C3-C12-H13       0.474       179.98       179.98         C16-C22       1.395       1.380       1.387       C3-C12-H13       114.56       115.55       C2-C3-C12-H13       0.474.57       178.98       179.98 <td>C4-C5</td> <td>1.394</td> <td>1.378</td> <td>1.373</td> <td>C2-C3-C12</td> <td>120.01</td> <td>119.51</td> <td>119.87</td> <td>H7-C1-C6-Cl11</td> <td>-0.005</td> <td>-0.051</td>                                                                                                                              | C4-C5          | 1.394                                                                                     | 1.378 | 1.373             | C2-C3-C12   | 120.01 | 119.51 | 119.87            | H7-C1-C6-Cl11                                                                 | -0.005  | -0.051          |
| CS-C6         1.386         1.388         CS-C4-C5         119.99         120.53         120.70         C1-C2-CS-C12         179.96         79.89           CG-C11         1.700         1.743         1.732         CS-C4-H9         119.98         H9.06         H8-C2-C3-C12         -0.141         0.032           C12-H14         1.325         1.251         1.255         C4-C5-H10         120.00         119.30         122-C3-C4-C5         0.034         0.064           C12-N14         1.325         1.255         C4-C5-H10         120.00         120.75         120.30         C2-C3-C4-C5         -179.98         179.86           C15-C16         1.395         1.330         C1-C6-C5         120.00         121.25         C2-C3-C12-H13         0.474         1.098           C15-C17         1.394         1.380         C1-C6-C5         120.00         119.45         119.55         C2-C3-C12-H14         -179.98         178.98           C15-C17         1.394         1.386         1.377         C12-N14         122.71         122.66         122.78         12.791         12.56         12.78         179.97         179.99           C17-C20         1.395         1.386         1.377         C12-N14-C15         121.01<                                                                                                                                                                                                                                                  | C4-H9          | 1.099                                                                                     | 1.073 | 0.93              | C4-C3-C12   | 119.99 | 121.42 | 121.40            | CI-C2-C3-C4                                                                   | -0.056  | -0.045          |
| CS-H10         L073         0.93         CS-C4-H9         119.06         119.06         118-C2-C3-C4         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.97         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.91         -                                                                                                                                                               | C5-C6          | 1.395                                                                                     | 1.386 | 1.388             | C3-C4-C5    | 119.99 | 120.53 | 120.70            | CI-C2-C3-C12                                                                  | 179.96  | 170.0           |
| Corc.11         1.7.08         1.7.52         1.7.52         1.7.52         0.034         0.064           C12-H13         1.098         1.086         0.93         C4-C5-C6         120.00         119.50         C2-C3-C4-L2         -0.141         0.064           C12-H13         1.325         1.251         1.255         C4-C5-H10         119.89         119.40         C2-C3-C4-C5         -179.98         -179.99         -179.99         -179.99         -179.99         -179.98         -179.98         -179.98         -179.98         -179.88         -179.98         -179.88         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -179.98         -178.99         -120.00         121.25         120.50         C12-C3-C4-C5         -0.111         -179.98         -178.98         -178.98         -178.98         -178.98         -178.99         -177.95         C2-C12-H14         -179.98         -178.98         -178.99         -177.95         C2-C12-H14         -178.98         -178.99         -179.95         C2-C2         1.395         1.386         H3-C12-V14         122.17         122.96         122.01         120.04         C                                                                                                                                                                                        | C5-HI0         | 1.099                                                                                     | 1.073 | 0.93              | C5-C4-H9    | 119.98 | 119.00 | 119.60            | H8-C2-C3-C4                                                                   | -1/9.9/ | .1/9.9          |
| C12-N14         1.325         1.255         C4-C5-H10         120.0         112.51         112.51         112.55         C4-C5-C4         179.99         179.99           N14-C15         1.470         1.409         1.415         C6-C5-H10         119.94         120.30         C12-C3-C4-C5         -179.98         179.99           C15-C16         1.395         1.386         C1-C6-C5         120.00         121.75         C2-C3-C12-H13         0.474         1.098           C16-C18         1.394         1.380         1.387         C5-C6-C111         119.09         119.28         119.55         C2-C3-C12-H14         -178.64         +178.14           C16-H19         10.099         1.074         0.930         C3-C12-H13         114.66         115.45         115.45         115.46         1174.98         179.98         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         120.02         122.78         C4-C3-C12-N14         1.22         1.83         179.89         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99         179.99                                                                                                                                                                                                                           | C12-H13        | 1.700                                                                                     | 1.745 | 0.93              | C4-C5-C6    | 120.02 | 120.39 | 119.00            | $C_2 - C_3 - C_4 - C_5$                                                       | -0.141  | 0.032           |
| Clinitia         Latis         Latis         Clice Clinitia         Latis         Latis <thlati< th="">         Latis         Latis</thlati<>                                                                                                                                                                                                              | C12-III3       | 1.098                                                                                     | 1.000 | 1 255             | C4-C5-H10   | 120.00 | 120.75 | 120.30            | C2-C3-C4-H9                                                                   | -179.99 | .179.9          |
| C15-C16       1.395       1.390       1.386       C1-C6-C5       120.00       121.25       120.50       C12-C3-C4-C2       0.1876       1.1207         C15-C16       1.394       1.388       1.402       C1-C6-C11       120.00       119.45       119.55       C2-C3-C12-H13       0.474       1.098         C16-C18       1.394       1.380       1.387       C5-C6-C11       119.99       119.25       C2-C3-C12-H14       178.94       178.98         C17-C20       1.395       1.385       1.375       C3-C12-N14       122.71       121.98       118.60       C3-C4-C3-C6       -0.121       0.047         C18-C22       1.395       1.386       1.377       C12-N14-C15       121.05       120.24       121.00       C3-C4-C5-C6       -0.121       0.040         C20-C22       1.394       1.381       1.386       N4-C15-C16       119.99       117.79       116.83       H9-C4-C5-H10       0.046       0.004         C20-C22       1.394       1.361       1.366       C15-C16-C18       121.06       120.67       122.00       C4-C5-C6-C11       79.97       79.95         C25-H27       1.117       1.086       0.960       C15-C16-C18       121.06       120.67       122.00<                                                                                                                                                                                                                                                                                                                | N14-C15        | 1.525                                                                                     | 1 409 | 1.235             | C6-C5-H10   | 119.98 | 119 94 | 120.30            | C12-C3-C4-C5                                                                  | -179.99 | .179.8          |
| C15-C17       1.394       1.388       1.402       C1-C6-C111       120.00       119.45       119.55       C2-C3-C12-H13       -1.478.64       -178.1         C16-H19       1.099       1.074       0.930       C3-C12-H13       114.56       115.45       118.60       C4-C3-C12-H13       -178.64       -178.1         C17-C20       1.395       1.385       1.375       C3-C12-N14       122.71       122.96       122.78       C4-C3-C12-N14       1.22       1.83         C17-H21       1.099       1.075       0.930       H13-C12-N14       122.71       121.98       118.60       C3-C4-C5-C6       -0.121       0.047         C18-H23       1.099       1.075       0.930       N14-C15-C17       124.23       123.34       H9-C4-C5-H10       0.0463       0.004         C20-H24       1.099       1.075       0.930       C16-C15-C17       118.15       118.83       117.86       C4-C5-C6-C11       0.179.95       179.99         C22-429       1.54       1.361       1.366       C15-C16-C18       121.06       120.07       122.00       C4-C5-C6-C11       0.023       0.012         C22-H27       1.117       1.081       0.960       C15-C16-H19       182.64       118.73                                                                                                                                                                                                                                                                                                                 | C15-C16        | 1.395                                                                                     | 1.390 | 1.386             | C1-C6-C5    | 120.00 | 121.25 | 120.50            | C12-C3-C4-C9                                                                  | 0.1876  | 0.1207          |
| C16-C18         1.394         1.380         1.387         C5-C6-C111         119.99         119.28         119.55         C2-C3-C12-N14         -178.64         -178.17           C16-H19         1.099         1.074         0.930         C3-C12-N14         112.271         122.56         122.78         C4C3-C12-N14         112.2         1.835           C17-H21         1.099         1.075         0.930         H13-C12-N14         122.71         121.98         118.60         C3-C4-C5-C6         -0.121         0.047           C18-H23         1.099         1.075         0.930         N14-C15-C17         124.23         123.34         125.31         H9-C4-C5-C6         179.97         79.95         C20-C22         1.394         1.361         1.366         C15-C16-C18         121.06         120.67         122.00         C4-C5-C6-C11         0.0463         0.004           C22-U29         1.54         1.361         1.366         C15-C16-C18         121.06         120.67         122.00         120.27         C3-C12-N14-C15         71.99         79.95         C25-U2         1.117         1.086         0.960         C15-C17-C20         120.00         120.27         C3-C12-N14-C15         71.30         178.6         2.216         C25-C29                                                                                                                                                                                                                     | C15-C17        | 1.394                                                                                     | 1.388 | 1.402             | C1-C6-Cl11  | 120.00 | 119.45 | 119.55            | C2-C3-C12-H13                                                                 | 0.474   | 1.098           |
| C16-H19       1.099       1.074       0.930       C3-C12-H13       114.56       115.45       118.60       C4-C3-C12-H13       -179.98       -178.9         C17-C20       1.395       1.385       1.375       C3-C12-N14       122.71       122.58       C4-C3-C12-N14       122.71       122.88       C4-C3-C12-N14       122.71       122.88       C4-C3-C12-N14       122.71       122.98       C4-C3-C45-H10       179.95       -179.95       -179.95       179.95       179.95       C20-C22       1.394       1.381       1.386       N14-C15-C17       124.23       123.34       125.31       H9-C4-C5-C6-C1       0.0293       10126         C20-H24       1.099       1.075       0.930       C16-C15-C17       124.23       123.34       117.86       C4-C5-C6-C1       10.0273       0.003       C25-H24       1.117       1.086       0.960       C18-C16-H19       121.67       122.00       C4-C5-C6-C11       -9.977       79.96       C25-C29       1.500       11405       1.44       C15-C16-H19       112.17       10.58       119.00       H10-C5-C6-                                                                                                                                                                                                                                             | C16-C18        | 1.394                                                                                     | 1.380 | 1.387             | C5-C6-Cl11  | 119.99 | 119.28 | 119.55            | C2-C3-C12-N14                                                                 | -178.64 | -178.1          |
| C17-C20       1.395       1.385       1.375       C3-C12-N14       122.71       122.56       122.78       C4-C3-C12-N14       1.22       1.83         C17-H21       1.099       1.075       0.930       H13-C12-N14       122.71       121.98       118.60       C3-C4-C5-C6       -0.121       0.047         C18-C22       1.395       1.386       1.377       C12-N14-C15       121.05       120.24       121.00       C3-C4-C5-C6       179.97       79.95         C20-C22       1.394       1.381       1.386       N14-C15-C17       124.23       123.34       192.4-C5-C6-C11       0.0463       0.0046         C20-H24       1.099       1.075       0.930       C16-C15-C17       118.15       118.83       117.86       C4-C5-C6-C11       -179.95       -179.95         C25-H26       1.117       1.086       0.960       C15-C16-C18       121.06       120.67       122.00       C4-C5-C6-C111       -179.97       79.95         C25-H26       1.117       1.086       0.960       C15-C17-C20       120.00       120.57       130.00       131.01       C12-N14-C15-C16       148.45       -139.3         C25-H28       1.117       1.086       0.960       C15-C17-C20       120.08                                                                                                                                                                                                                                                                                                            | C16-H19        | 1.099                                                                                     | 1.074 | 0.930             | C3-C12-H13  | 114.56 | 115.45 | 118.60            | C4-C3-C12-H13                                                                 | -179.98 | -178.9          |
| C17+H21       1.099       1.075       0.930       H13-C12-N14       122.71       121.98       118.60       C3-C4-C5-C6       -0.121       0.047         C18-C22       1.395       1.386       1.377       C12-N14-C15       121.05       120.24       121.00       C3-C4-C5-C6       179.95       179.95         C18-H23       1.099       1.075       0.930       N14-C15-C17       124.23       123.34       125.31       H9-C4-C5-C6       10.0293       1.0126         C20-C22       1.394       1.361       1.366       C15-C16-C18       121.06       120.67       122.00       C4-C5-C6-C11       .00463       .0046         C22-029       1.54       1.361       1.366       C15-C16-H19       118.15       118.83       119.00       H10-C5-C6-C11       .00273       .0003         C25-H26       1.117       1.086       0.960       C15-C17-H21       118.90       H13-00       H10-C5-C6-C111       -0.0273       .0003         C25-H28       1.117       1.086       0.960       C15-C17-H21       118.90       H20.04       H19-05       H12-C15-H4215       3.626       .2216         C25-C29       1.500       1.405       1.414       C15-C17-H21       118.91       120.04                                                                                                                                                                                                                                                                                                                 | C17-C20        | 1.395                                                                                     | 1.385 | 1.375             | C3-C12-N14  | 122.71 | 122.56 | 122.78            | C4-C3-C12-N14                                                                 | 1.22    | 1.83            |
| C18-C22       1.395       1.386       1.377       C12-N14-C15       121.05       120.24       121.00       C3-C4-C5-H10       179.95       .179.97         C18-H23       1.099       1.075       0.930       N14-C15-C16       119.99       117.79       116.83       H9-C4-C5-H10       0.0463       0.004         C20-C22       1.394       1.381       1.386       N14-C15-C17       124.23       123.34       125.31       H9-C4-C5-H10       0.0293       1.016         C20-U29       1.54       1.361       1.366       C15-C16-C18       121.06       120.07       122.00       C4-C5-C6-C11       -179.95       -179.95         C25-H26       1.117       1.081       0.960       C15-C16-H19       121.17       120.58       119.00       H10-C5-C6-C11       -0.0273       0.003         C25-H28       1.117       1.086       0.960       C15-C17-C20       120.00       120.27       C3-C12-N14-C15       -178.35       -178.6         C25-D29       1.500       1.405       1.414       C15-C17-H21       118.91       120.04       119.90       H13-C12-N14-C15       -148.45       -139.3         C16-C18-C22       120.28       120.08       119.10       C12-N14-C15-C16       H8       <                                                                                                                                                                                                                                                                                                   | C17-H21        | 1.099                                                                                     | 1.075 | 0.930             | H13-C12-N14 | 122.71 | 121.98 | 118.60            | C3-C4-C5-C6                                                                   | -0.121  | 0.047           |
| C18+H23       1.099       1.075       0.930       N14-C15-C16       119.99       117.79       116.83       H9-C4-C5-C6       179.97       79.95         C20-C22       1.394       1.381       1.386       N14-C15-C17       124.23       123.34       125.31       H9-C4-C5-H10       0.0463       0.004         C20-H24       1.099       1.075       0.930       C16-C15-C17       118.15       118.83       H19-C4-C5-C6-C1       10.023       1.0126         C22-029       1.54       1.361       1.366       C15-C16-C18       121.06       120.67       122.00       C4-C5-C6-C11       -179.95       -179.96         C25-H26       1.117       1.086       0.960       C15-C17-C20       120.00       120.50       H10-C5-C6-C11       -0.0273       -0.003         C25-H27       1.117       1.086       0.960       C15-C17-H21       118.91       120.04       H19.90       H13-C12-N14-C15       3.626       2.216         C25-H28       1.117       1.086       0.960       C15-C17-H21       118.91       120.04       119.90       H13-C12-N14-C15-C16       148.45       -139.3         C16-C18-H23       120.01       120.26       120.40       N14-C15-C16-C18       129.17       C16-C18-H23<                                                                                                                                                                                                                                                                                              | C18-C22        | 1.395                                                                                     | 1.386 | 1.377             | C12-N14-C15 | 121.05 | 120.24 | 121.00            | C3-C4-C5-H10                                                                  | 179.95  | -179.9          |
| C20-C22       1.394       1.381       1.386       N14-C15-C17       124.23       123.34       125.31       H9-C4-C5-H10       0.0463       0.004         C20-H24       1.099       1.075       0.930       C16-C15-C17       118.15       118.83       117.86       C4-C5-C6-C1       0.0293       1.0126         C22-029       1.54       1.361       1.366       C15-C16-C18       121.06       122.00       C4-C5-C6-C11       179.95       179.95         C25-H26       1.117       1.086       0.960       C15-C16-H19       118.26       118.73       119.00       H10-C5-C6-C11       -0.0273       -0.003         C25-H27       1.117       1.086       0.960       C15-C17-H21       118.91       120.04       H19-C15-C16       -177.33       -178.6         C25-C29       1.500       1.405       1.414       C15-C17+H21       118.91       120.04       113-C12-N14-C15       -177.33       -178.6         C25-C29       1.500       1.405       1.414       C15-C17+H21       118.91       120.04       113-C12-N14-C15-C16       -148.45       -139.3         C16-C18-C22       120.28       120.04       N14-C15-C16-H19       0.714       0.826         C22-C12-H24       120.01                                                                                                                                                                                                                                                                                                            | C18-H23        | 1.099                                                                                     | 1.075 | 0.930             | N14-C15-C16 | 119.99 | 117.79 | 116.83            | H9-C4-C5-C6                                                                   | 179.97  | 79.95           |
| C20-H24       1.099       1.075       0.930       Cl6-Cl5-Cl7       118.15       118.83       117.86       C4-C5-C6-Cl       0.0293       1.0126         C22-029       1.54       1.361       1.366       Cl5-Cl6-H19       118.26       118.73       119.00       H10-C5-C6-Cl       179.97       79.96         C25-H26       1.117       1.086       0.960       Cl5-Cl6-H19       112.17       120.50       120.27       C3-Cl2-N14-Cl5       -177.33       -178.6         C25-H28       1.117       1.086       0.960       Cl5-Cl7-C20       120.00       120.50       120.27       C3-Cl2-N14-Cl5       -177.33       -178.6         C25-O29       1.500       1.405       1.414       Cl5-Cl7-H21       118.91       120.04       119.90       H13-Cl2-N14-Cl5       -177.33       -178.6         C25-O29       1.500       1.405       1.414       Cl5-Cl7-H21       119.90       119.43       119.90       H13-Cl2-N14-Cl5-Cl6       18.45       -139.3         C16-Cl8-H23       120.01       120.62       120.40       N14-Cl5-Cl6-H19       0.714       0.826         C17-C20-Cl22       119.83       120.18       120.82       Cl7-Cl5-Cl6-H19       0.714       0.826         C17-C20-Cl2                                                                                                                                                                                                                                                                                                      | C20-C22        | 1.394                                                                                     | 1.381 | 1.386             | N14-C15-C17 | 124.23 | 123.34 | 125.31            | H9-C4-C5-H10                                                                  | 0.0463  | 0.004           |
| C22-029       1.54       1.54       1.56       C15-C16-C18       121.06       120.67       122.00       C4-C5-C6-C11       -179.95       -179.95         C25-H26       1.117       1.081       0.960       C15-C16-H19       118.73       119.00       H10-C5-C6-C11       -0.0273       0.003         C25-H27       1.117       1.086       0.960       C15-C17-C20       120.00       120.50       120.27       C3-C12-N14-C15       -177.33       -178.6         C25-029       1.500       1.405       1.414       C15-C17-H21       118.91       120.04       119.90       H13-C12-N14-C15       -16.84       -139.3         C16-C18-C22       120.28       120.00       120.62       120.40       N14-C15-C16-H19       0.714       0.826         C17-C20-C22       119.88       120.01       120.52       119.40       N14-C15-C16-H19       0.714       0.826         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-H19       0.714       0.826         C17-C20-C22       119.88       120.11       119.25       119.60       C17-C15-C16-H19       178.23       78.79         C22-C20-H24       120.01       119.25       119.60       N14-C15-C17-C20       18.93 <td< td=""><td>C20-H24</td><td>1.099</td><td>1.075</td><td>0.930</td><td>C16-C15-C17</td><td>118.15</td><td>118.83</td><td>117.86</td><td>C4-C5-C6-C1</td><td>0.0293</td><td>0.0126</td></td<>                                                                                                             | C20-H24        | 1.099                                                                                     | 1.075 | 0.930             | C16-C15-C17 | 118.15 | 118.83 | 117.86            | C4-C5-C6-C1                                                                   | 0.0293  | 0.0126          |
| C25-H26         1.117         1.081         0.960         C15-C16-H19         118.75         119.00         H10-C5-C6-C11         -0.0273         0.003           C25-H27         1.117         1.086         0.960         C15-C17-C20         120.00         120.50         120.27         C3-C12-N14-C15         -177.33         -178.6           C25-H28         1.117         1.086         0.960         C15-C17-C20         120.00         120.50         120.27         C3-C12-N14-C15         3.626         2.216           C25-O29         1.500         1.405         1.414         C15-C17-H21         118.91         120.04         119.90         H13-C12-N14-C15-C16         -148.45         -139.3           C16-C18-C22         120.28         120.04         N14-C15-C16-C18         179.86         79.96           C22-C18-H23         119.99         119.43         120.82         C17-C15-C16-C18         179.86         79.96           C17-C20-H24         119.13         120.55         119.60         N14-C15-C17-C18         78.79         79.96           C17-C20-H24         119.13         120.55         119.60         N14-C15-C17-C20         178.93         79.19           C18-C22-C29         124.77         120.04         119.25                                                                                                                                                                                                                                        | C22-029        | 1.54                                                                                      | 1.361 | 1.366             | C15-C16-C18 | 121.06 | 120.67 | 122.00            | C4-C5-C6-CIII                                                                 | -179.95 | -179.9          |
| C25-H27       1.117       1.086       0.960       C18-C16-H19       121.17       120.58       119.00       H10-C5-C6-C111       -0.0275       -0.00275         C25-H28       1.117       1.086       0.960       C15-C17-C20       120.00       120.27       C3-C12-N14-C15       -177.33       -178.6         C25-029       1.500       1.405       1.414       C15-C17-H21       118.91       120.04       119.90       H13-C12-N14-C15       3.626       2.216         C25-029       1.500       1.405       1.414       C15-C17-H21       119.90       119.43       119.90       C12-N14-C15-C16       -148.45       -139.3         C16-C18-H23       120.01       120.62       120.40       N14-C15-C16-C18       79.96       C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       79.96         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       -2.074         C17-C20-H24       119.13       120.55       119.60       N14-C15-C17-C20       178.93       79.19         C18-C22-C20       129.39       119.68       119.91       C14-C15-C17-C20       175.96       -177         C20-C22-O29       124.77       120.04       115.02<                                                                                                                                                                                                                                                                                             | C25-H26        | 1.117                                                                                     | 1.081 | 0.960             | C15-C16-H19 | 118.26 | 118.73 | 119.00            | H10-C5-C6-C1                                                                  | 1/9.97  | 79.96           |
| C25-029       1.500       1.405       1.414       C15-C17-U20       120.00       120.30       120.27       C3-C12-N14-C15       3.626       2.216         C25-029       1.500       1.405       1.414       C15-C17-H21       118.91       120.04       119.90       H13-C12-N14-C15       3.626       2.216         C20-C17-H21       119.90       119.43       119.90       C12-N14-C15-C16       -148.45       139.3         C16-C18-C22       120.28       120.08       119.11       C12-N14-C15-C16       -148.45       139.3         C16-C18-H23       120.01       120.62       120.40       N14-C15-C16-C18       79.96         C22-C18-H23       119.99       119.28       120.40       N14-C15-C16-C18       79.96         C17-C20-H24       119.13       120.55       119.60       C17-C15-C16-C18       78.79         C18-C22-C20-H24       120.01       119.25       119.60       N14-C15-C17-H21       1.36       0.841         C18-C22-C20-H24       120.01       119.25       119.60       N14-C15-C17-C20       1.59       1.349         C20-C22-O29       120.02       120.04       115.02       C16-C15-C17-C21       -175.96       -177         H26-C25-H27       108.20       <                                                                                                                                                                                                                                                                                                         | C25-H27        | 1.117                                                                                     | 1.080 | 0.960             | C15-C10-H19 | 121.17 | 120.58 | 119.00            | $\begin{array}{c} \text{HI0-C3-C0-CIII} \\ \text{C2-C12-N14-C15} \end{array}$ | -0.0275 | ·0.005          |
| CESCES       1.803       1.803       1.803       1.1930       119.90       C12-N14-C15-C16       -148.45       1.139.3         C16-C18-C22       120.28       120.08       119.11       C12-N14-C15-C16       -148.45       79.96         C12-C17-H21       119.90       C12-N14-C15-C16       148.45       79.96         C16-C18-C22       120.28       120.01       120.62       120.40       N14-C15-C16-C18       179.86       79.96         C22-C18-H23       119.99       119.28       120.40       N14-C15-C16-C18       -2.61       2.074         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       2.074         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       2.074         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       2.074         C18-C22-C20-H24       120.01       119.25       119.60       N14-C15-C17-C20       178.93       79.97         C18-C22-C20       129.39       119.68       119.91       C14-C15-C17-C20       1.59       1.349         C20-C22-O29       120.02       120.04       115.02       C16-C18-C18-C22       1.776                                                                                                                                                                                                                                                                                                              | C25-029        | 1.117                                                                                     | 1.080 | 0.900             | C15-C17-C20 | 118.01 | 120.30 | 110.27            | H13-C12-N14-C15                                                               | -177.55 | 2 216           |
| C16-C18-C22       120.28       120.08       119.11       C12-N14-C15-C17       34.19       2.817         C16-C18-H23       120.01       120.62       120.40       N14-C15-C16-C18       179.86       79.96         C22-C18-H23       119.99       119.28       120.40       N14-C15-C16-C18       179.86       79.96         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       -2.074         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       -2.074         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       -2.074         C17-C20-H24       119.13       120.55       119.60       N14-C15-C17-C20       178.93       79.19         C18-C22-C20       119.39       119.68       119.91       C14-C15-C17-C20       178.93       79.19         C18-C22-C20       120.02       120.04       115.02       C16-C15-C17-C20       1.59       1.349         C20-C22-C29       120.02       120.04       115.02       C16-C15-C17-C20       1.75.96       -177         H26-C25-H28       108.19       109.35       109.50       C15-C16-C18-C22       1.74.6       1.47                                                                                                                                                                                                                                                                                                            | C25-02)        | 1.500                                                                                     | 1.405 | 1.414             | C20-C17-H21 | 119.90 | 119.43 | 119.90            | C12-N14-C15-C16                                                               | -148.45 | .139.3          |
| C16-C18-H23       120.01       120.62       120.40       N14-C15-C16-C18       179.86       79.96         C22-C18-H23       119.99       119.28       120.40       N14-C15-C16-C18       179.86       79.96         C17-C20-C22       119.88       120.18       120.82       C17-C15-C16-C18       -2.61       -2.074         C17-C20-H24       119.13       120.55       119.60       C17-C15-C16-C18       -2.61       -2.074         C18-C22-C20-H24       120.01       119.25       119.60       N14-C15-C17-C20       178.93       79.19         C18-C22-C20       119.39       119.68       119.91       C14-C15-C17-C20       178.93       79.19         C18-C22-C29       124.77       120.26       125.07       C16-C15-C17-C20       1.59       1.349         C20-C22-O29       120.02       120.04       115.02       C16-C15-C17-C21       -175.96       -177         H26-C25-H27       108.20       109.35       109.50       C15-C16-C18-C22       1.746       1.47         H26-C25-H28       108.19       109.31       109.50       C15-C16-C18-C22       -179.97       -179.4         H26-C25-H28       108.19       109.50       C15-C17-C20-C22       -179.97       -179.4 <t< td=""><td></td><td></td><td></td><td></td><td>C16-C18-C22</td><td>120.28</td><td>120.08</td><td>119.11</td><td>C12-N14-C15-C17</td><td>34.19</td><td>2.817</td></t<>                                                                                                                                        |                |                                                                                           |       |                   | C16-C18-C22 | 120.28 | 120.08 | 119.11            | C12-N14-C15-C17                                                               | 34.19   | 2.817           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                           |       |                   | C16-C18-H23 | 120.01 | 120.62 | 120.40            | N14-C15-C16-C18                                                               | 179.86  | 79.96           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                           |       |                   | C22-C18-H23 | 119.99 | 119.28 | 120.40            | N14-C15-C16-H19                                                               | 0.714   | 0.826           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                           |       |                   | C17-C20-C22 | 119.88 | 120.18 | 120.82            | C17-C15-C16-C18                                                               | -2.61   | ·2.074          |
| C22-C20-H24       120.01       119.25       119.60       N14-C15-C17-C20       178.93       79.19         C18-C22-C20       119.39       119.68       119.91       C14-C15-C17-H21       1.36       0.841         C18-C22-C29       124.77       120.26       125.07       C16-C15-C17-C20       1.59       1.349         C20-C22-O29       120.02       120.04       115.02       C16-C15-C17-C21       -175.96       -177         H26-C25-H27       108.20       109.35       109.50       C15-C16-C18-C22       1.746       1.47         H26-C25-H28       108.19       109.31       109.50       C15-C16-C18-H23       -179.04       -178.1         H26-C25-H28       108.19       109.36       108.98       109.50       H19-C16-C18-C22       -179.97       -179.4         H27-C25-H28       109.36       108.98       109.50       H19-C16-C18-H23       0.041       0.912         H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-H24       -1.277                                                                                                                                                                                                                                                                                                          |                |                                                                                           |       |                   | C17-C20-H24 | 119.13 | 120.55 | 119.60            | C17-C15-C16-H19                                                               | 178.23  | 78.79           |
| C18-C22-C20       119.39       119.68       119.91       C14-C15-C17-H21       1.36       0.841         C18-C22-O29       124.77       120.26       125.07       C16-C15-C17-C20       1.59       1.349         C20-C22-O29       120.02       120.04       115.02       C16-C15-C17-C21       -175.96       -177         H26-C25-H27       108.20       109.35       109.50       C15-C16-C18-C22       1.746       1.47         H26-C25-H28       108.19       109.31       109.50       C15-C16-C18-H23       -179.04       -178.1         H26-C25-O29       105.84       106.89       109.50       H19-C16-C18-C22       -179.97       -179.4         H27-C25-H28       109.36       108.98       109.50       H19-C16-C18-H23       0.041       0.912         H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-C22       -0.037       0.025         H28-C25-O29       111.53       111.18       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-H24       -1.277       -1.911         C16-C18-C22-C20       0.034       0.114       C16-C18-C22-C20       0.034       0.114                                                                                                                                                                                                                                                                                                                      |                |                                                                                           |       |                   | C22-C20-H24 | 120.01 | 119.25 | 119.60            | N14-C15-C17-C20                                                               | 178.93  | 79.19           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                |                                                                                           |       |                   | C18-C22-C20 | 119.39 | 119.68 | 119.91            | C14-C15-C17-H21                                                               | 1.36    | 0.841           |
| C20-C22-O29       120.02       120.04       115.02       C16-C15-C17-C21       -175.96       -177         H26-C25-H27       108.20       109.35       109.50       C15-C16-C18-C22       1.746       1.47         H26-C25-H28       108.19       109.31       109.50       C15-C16-C18-H23       -179.04       -178.1         H26-C25-O29       105.84       106.89       109.50       H19-C16-C18-C22       -179.97       -179.4         H27-C25-H28       109.36       108.98       109.50       H19-C16-C18-H23       0.041       0.912         H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-C22       -0.037       -0.025         H28-C25-O29       111.53       111.18       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-C22       177.87       78.33         H21-C17-C20-H24       -1.277       .1.911       C16-C18-C22-C20       0.034       0.114         C16-C18-C22-C20       0.034       0.114       C16-C18-C22-C20       0.034       0.114                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |                                                                                           |       |                   | C18-C22-O29 | 124.77 | 120.26 | 125.07            | C16-C15-C17-C20                                                               | 1.59    | 1.349           |
| H26-C25-H27       108.20       109.35       109.30       C15-C16-C18-C22       1./46       1.47         H26-C25-H28       108.19       109.31       109.50       C15-C16-C18-H23       -179.04       .178.1         H26-C25-O29       105.84       106.89       109.50       H19-C16-C18-C22       -179.97       .179.4         H27-C25-H28       109.36       108.98       109.50       H19-C16-C18-H23       0.041       0.912         H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-C22       -0.037       .0.025         H28-C25-O29       111.53       111.18       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-C22       177.87       78.33         H21-C17-C20-H24       -1.277       .1.911       C16-C18-C22-C20       0.034       0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                           |       |                   | C20-C22-O29 | 120.02 | 120.04 | 115.02            | C16-C15-C17-C21                                                               | -175.96 | -177            |
| H26-C25-H28       108.19       109.31       109.30       C15-C16-C18-H23       -179.04       -178.1         H26-C25-O29       105.84       106.89       109.50       H19-C16-C18-C22       -179.97       -179.4         H27-C25-H28       109.36       108.98       109.50       H19-C16-C18-H23       0.041       0.912         H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-C22       -0.037       -0.025         H28-C25-O29       111.53       111.18       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-C22       177.87       78.33         H21-C17-C20-H24       -1.277       -1.911       C16-C18-C22-C20       0.034       0.114         C16-C18-C22-C20       0.034       0.114       C16-C18-C22-C20       0.034       0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                           |       |                   | H26-C25-H27 | 108.20 | 109.35 | 109.50            | C15-C16-C18-C22                                                               | 1.746   | 1.4/            |
| H20-C25-C25       100.34       100.39       109.30       H19-C10-C18-C22       -117.57       117.4         H27-C25-H28       109.36       108.98       109.50       H19-C16-C18-H23       0.041       0.912         H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-C22       -0.037       -0.025         H28-C25-O29       111.53       111.18       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-C22       177.87       78.33         H21-C17-C20-H24       -1.277       -1.911       C16-C18-C22-C20       0.034       0.114         C16-C18-C22-C20       0.034       0.114       C16-C18-C22-C20       0.034       0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                                                                                           |       |                   | H20-C23-H28 | 105.19 | 109.51 | 109.50            | Н10 С16 С18 С22                                                               | -179.04 | ·1/8.1<br>170/  |
| H27-C25-O29       111.46       111.06       109.50       C15-C17-C20-C22       -0.037       -0.025         H28-C25-O29       111.53       111.18       109.50       C15-C17-C20-H24       179.97       79.72         C22-O29-C25       118.50       115.72       118.19       H21-C17-C20-C22       17.87       78.33         H21-C17-C20-H24       -1.277       -1.911       C16-C18-C22-C20       0.034       -0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                                                                                           |       |                   | H27-C25-H28 | 109.36 | 108.98 | 109.50            | H19-C16-C18-H23                                                               | 0.041   | 0.912           |
| H28-C25-O29 111.53 111.18 109.50 C15-C17-C20-H24 179.97 79.72<br>C22-O29-C25 118.50 115.72 118.19 H21-C17-C20-C22 177.87 78.33<br>H21-C17-C20-H24 -1.277 1.911<br>C16-C18-C22-C20 0.034 0.114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                           |       |                   | H27-C25-O29 | 111.46 | 111.06 | 109.50            | C15-C17-C20-C22                                                               | -0.037  | 0.025           |
| C22-O29-C25 118.50 115.72 118.19 H21-C17-C20-C22 177.87 78.33<br>H21-C17-C20-H24 -1.277 1.911<br>C16-C18-C22-C20 0.034 0.114<br>C16 C18 C22 O29 179 19 09 179 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                                                                                           |       |                   | H28-C25-O29 | 111.53 | 111.18 | 109.50            | C15-C17-C20-H24                                                               | 179.97  | 79.72           |
| H21-C17-C20-H24 -1.277 ·1.911<br>C16-C18-C22-C20 0.034 ·0.114<br>C16 C18 C22 O29 179 99 179 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                           |       |                   | C22-O29-C25 | 118.50 | 115.72 | 118.19            | H21-C17-C20-C22                                                               | 177.87  | 78.33           |
| C16-C18-C22-C20 0.034 0.114<br>C16 C18 C22 O29 179 99 179 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                           |       |                   |             |        |        |                   | H21-C17-C20-H24                                                               | -1.277  | -1.911          |
| C16 C18 C22 O20 170 00 170 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                           |       |                   |             |        |        |                   | C16-C18-C22-C20                                                               | 0.034   | 0.114           |
| C10-C10-C22-O23 -1/9.39 -1/9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                                                                                           |       |                   |             |        |        |                   | C16-C18-C22-O29                                                               | -179.99 | .179.1          |
| H23-C18-C22-C20 -179.98 79.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                           |       |                   |             |        |        |                   | H23-C18-C22-C20                                                               | -179.98 | 79.56           |
| H23-C18-C22-O29 0.022 0.562                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                           |       |                   |             |        |        |                   | H23-C18-C22-O29                                                               | 0.022   | 0.562           |
| C17-C20-C22-C18 -1.21 0.603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                           |       |                   |             |        |        |                   | C17-C20-C22-C18                                                               | -1.21   | 0.603           |
| C17-C20-C22-O29 179.82 178.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                           |       |                   |             |        |        |                   | C17-C20-C22-O29                                                               | 179.82  | 178.4           |
| H24-C20-C22-C18 177.93 79.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                                                                                           |       |                   |             |        |        |                   | H24-C20-C22-C18                                                               | 1/7.93  | 1.25            |
| H24-C20-C22-O29 -1.03 -1.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                           |       |                   |             |        |        |                   | H24-C20-C22-O29                                                               | -1.03   | -1.35           |
| C10 - C22 - O29 - C25 - 90.07 - 87.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                           |       |                   |             |        |        |                   | $C_{10}$ - $C_{22}$ - $O_{29}$ - $C_{25}$                                     | -90.07  | ·07.19<br>03.70 |
| H26_C25_O29_C23 89.89 93.19<br>H26_C25_O20_C22 170.00 70.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                           |       |                   |             |        |        |                   | H26-C25-O29-C22                                                               | 179.09  | 79.01           |
| H20-C25-C22 - 179.91<br>H27-C25-C29-C22 - 59.99 60.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                                                           |       |                   |             |        |        |                   | H27-C25-O29-C22                                                               | -59.99  | 60.86           |
| H28-C25-O29-C22 59.99 60.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                           |       |                   |             |        |        |                   | H28-C25-O29-C22                                                               | 59.99   | 60.68           |



Fig. 3. Theoretical optimized geometric structure with atoms numbering of CBMA

slightly varied from the experimental ones because the states of molecules are different during experimental and theoretical processes. The calculated geometrical parameters showed a good approximation and they can be used to calculate thermodynamic properties and vibrational frequencies, *etc*.

In the benzene ring, C-C bond length is about 1.396 Å [25]. For CBMA, the C-C bond length of the benzene ring varies from 1.394-1.395 Å by B3LYP method, 1.378-1.393 Å by HF method and 1.371-1.402 Å by experimental readings. The C-C bond length of the benzene ring is not similar due to the substitution of methoxy group, chlorine and nitrogen. The aromatic C-H bond lengths such as C1-H7 = 1.099/1.073 Å, C2-H8 = 1.099/1.076 Å, C4-H9 = 1.099/1.073 Å, C5-H10 = 1.099/1.073 Å, C17-H21 = 1.099/1.075 Å, C20-H24 = 1.099/1.075 Å, C16-H19 = 1.099/ 1.074 Å and C18-H23 = 1.099/1.075 Å are calculated by B3LYP and HF and methods respectively, which is in good agreement with the literature value (0.930 Å) [16]. There are small increments in the C-H bond lengths of the methoxy group (C25-H26 = 1.117/1.081/0.96 Å, C25-H27 = 1.117/1.086/0.96 Å and C25-H28 = 1.117/1.086/0.96 Å calculated by B3LYP, HF and experimental methods, respectively).

The bond length of N14-C12 is 1.325/1.251/1.255 Å calculated by B3LYP, HF and experimental methods respectively, which is shorter than the bond length of N14-C15 (1.47/1.409/ 1.415 Å by B3LYP, HF and experimental methods); this is due to the double bond between N14 and C12. The C22-O29, C25-O29 bond lengths are 1.54/1.361/1.366 Å and 1.5/1.405/ 1.414 Å calculated by B3LYP, HF and experimental methods respectively. The bond length of C6-Cl11 is 1.760/1.743/1.732 Å calculated by B3LYP, HF and experimental methods, respectively and this is the longest bond while comparing with all other bonds in the title molecule. Due to the electron donating nature of methoxy group, the bond angle for C18-C22-C20 is observed as 119.39° and 119.68° calculated by DFT/HF methods respectively, which shows a good agreement with the experimental data(119.91°) [16].

The bond angle of C12-N14-C15 is  $121.05^{\circ}/120.24^{\circ}$  calculated by DFT/HF methods which is closer to the experimental data (121°). The bond angles of H27-C25-O29 and H28-C25-O29 by DFT/HF methods are  $111.49^{\circ}/111.06^{\circ}$  and  $111.53^{\circ}/111.18^{\circ}$  which is greater than the experimental finding (109.5°). The dihedral angles are calculated according to the atoms C2-C3-C12-N14 (-178.64°/-178.1°) and C4-C3-C12-N14 (1.22°/1.83°) by DFT/HF methods.

**Vibration analysis:** The vibration analysis is used to find vibrational modes of molecular structures of the compound. The experimental and theoretical FT-IR and FT-Raman spectra of CBMA are shown in Figs. 4 and 5, respectively.



Fig. 4. Comparison of experimental and theoretical HF/B3LYP/6-311G (d,p) FT-IR spectra for CBMA



Fig. 5. Comparison of experimental and theoretical HF/B3LYP/6-311G (d,p) FT-Raman spectra for CBMA

The observed and calculated FTIR and FT-Raman wave numbers of vibrational modes of CBMA are depicted in Table-2. In the present study, the scaling factors of 0.9085 and 0.9668 are followed for HF and DFT methods respectively. According to the theoretical calculations, CBMA has a planar structure. The molecule has 29 atoms and 81 normal modes of fundamental vibrations. All the 81 vibrations are distributed as 28 stretching, 27 in plane bending, 26 torsional and 4 out of plane bending vibrations. All the fundamental vibrations are found to be active in both IR and Raman regions. **C-C vibrations:** The ring stretching vibrations are very important in the spectrum of benzene. Most of the ring vibrations are affected by the substitution to the aromatic ring of benzene derivatives. The six ring carbon atoms undergo skeletal vibration. The C-C stretching modes of the phenyl group are expected in the range from 1625 to 1430 cm<sup>-1</sup>. For the molecule (CBMA), C-C stretching vibration peaks are obtained at 1623, 1577, 1451, 1407 and 1362 cm<sup>-1</sup>.

**C-H vibrations:** The aromatic organic compounds and their derivatives are very close to benzene and exhibit multiple

|      | (                 | COMPARIS                                               | ON OF THE I | EXPERIME | T<br>NTAL AND                | ABLE-2<br>CALCULA            | TED VIBRA | ΓΙΟΝΑL SP | ECTRA OF                     | CBMA                         |             |
|------|-------------------|--------------------------------------------------------|-------------|----------|------------------------------|------------------------------|-----------|-----------|------------------------------|------------------------------|-------------|
| Mode | Experi<br>wavenum | merimental Theoretical wavenumbers (cm <sup>-1</sup> ) |             |          |                              |                              |           |           |                              | Vibrational                  |             |
| No.  |                   | FT-                                                    |             | HF/6-31  | 1G(d,p)                      |                              | Ι         | OFT/B3LYP | /6-311G(d,p                  | )                            | assignments |
|      | FT-IR             | Raman                                                  | Unscaled    | Scaled   | <sup>a</sup> I <sub>iR</sub> | <sup>b</sup> I <sub>RA</sub> | Unscaled  | Scaled    | <sup>a</sup> I <sub>iR</sub> | <sup>b</sup> I <sub>RA</sub> |             |
| 1    | 3062m             | 3069w                                                  | 3376        | 3067     | 1.74                         | 90.67                        | 3206      | 3118      | 3.18                         | 144.34                       | v(CH)       |
| 2    |                   |                                                        | 3366        | 3058     | 5.22                         | 113.65                       | 3203      | 3096      | 12.26                        | 134.97                       | v(NC)       |
| 3    |                   |                                                        | 3358        | 3050     | 1.77                         | 60.74                        | 3202      | 3095      | 4.41                         | 122                          | v(CH)       |
| 4    |                   |                                                        | 3355        | 3048     | 6.98                         | 147.47                       | 3198      | 3091      | 8.09                         | 140.53                       | v(NC)       |
| 5    |                   |                                                        | 3349        | 3042     | 13.06                        | 78.91                        | 3193      | 3086      | 0.63                         | 52.81                        | v(ClC)      |
| 6    | 3036m             |                                                        | 3336        | 3030     | 9.53                         | 87.04                        | 3183      | 3077      | 4.71                         | 87.84                        | v(CH)       |
| 7    |                   |                                                        | 3331        | 3026     | 14.23                        | 31.2                         | 3175      | 3069      | 8.36                         | 29.42                        | v(CH)       |
| 8    | 3015m             | 3016w                                                  | 3327        | 3022     | 11.45                        | 56.96                        | 3165      | 3059      | 7.99                         | 53.73                        | v(CH)       |
| 9    |                   |                                                        | 3274        | 2974     | 63.93                        | 191.56                       | 3133      | 3028      | 28.77                        | 192.75                       | v(CH)       |
| 10   | 2935m             |                                                        | 3217        | 2922     | 49.37                        | 40.35                        | 3058      | 2953      | 42.6                         | 72.17                        | v(CH)       |
| 11   | 2930m             |                                                        | 3207        | 2913     | 32.89                        | 33.64                        | 3002      | 2902      | 56.17                        | 46.52                        | v(CH)       |
| 12   | 2842m             | 2845w                                                  | 3158        | 2869     | 65.13                        | 109.78                       | 3000      | 2900      | 64.06                        | 150.54                       | v(CH)       |
| 13   | 1942m             |                                                        | 1892        | 1718     | 282.3                        | 2183.07                      | 1685      | 1629      | 85.88                        | 2801.54                      | v(OH)       |
| 14   |                   |                                                        | 1802        | 1637     | 8.55                         | 369.28                       | 1643      | 1588      | 115.54                       | 111.86                       | v(CH)       |
| 15   | 1623s             | 1620m                                                  | 1788        | 1624     | 31.12                        | 941.69                       | 1627      | 1572      | 3.46                         | 5833.13                      | v(CC)       |
| 16   |                   |                                                        | 1756        | 1595     | 0.7                          | 12.51                        | 1606      | 1552      | 6.59                         | 54.91                        | v(CC)       |
| 17   | 1577m             | 1591vs                                                 | 1753        | 1592     | 23.68                        | 51.33                        | 1603      | 1549      | 4.64                         | 1466.5                       | v(CC)       |
| 18   |                   | 1566s                                                  | 1674        | 1520     | 272.01                       | 48.07                        | 1537      | 1485      | 220.57                       | 471.72                       | v(CH)       |
| 19   | 1507s             |                                                        | 1654        | 1502     | 34.85                        | 36.82                        | 1519      | 1468      | 27.95                        | 306.54                       | v(CH)       |
| 20   |                   |                                                        | 1627        | 1478     | 21.16                        | 13.85                        | 1506      | 1456      | 59.15                        | 6.69                         | v(CH)       |
| 21   |                   |                                                        | 1612        | 1464     | 7.7                          | 16.2                         | 1491      | 1441      | 8.12                         | 22.3                         | v(CH)       |
| 22   | 1451m             |                                                        | 1602        | 1455     | 24.67                        | 4.71                         | 1477      | 1427      | 20.58                        | 8.68                         | v(CH)       |
| 23   |                   |                                                        | 1557        | 1414     | 0.25                         | 23.75                        | 1454      | 1405      | 8.26                         | 26.8                         | v(CC)       |
| 24   | 1407w             | 1404w                                                  | 1547        | 1405     | 10.69                        | 31.75                        | 1435      | 1387      | 8.29                         | 295.4                        | v(CC)       |
| 25   | 1362w             |                                                        | 1511        | 1372     | 22.87                        | 3.53                         | 1396      | 1349      | 12.73                        | 37.17                        | v(CC)       |
| 26   |                   |                                                        | 1431        | 1300     | 10.61                        | 13.33                        | 1335      | 1290      | 64.4                         | 270.12                       | v(CC)       |
| 27   | 1295m             |                                                        | 1420        | 1290     | 2.02                         | 2.94                         | 1327      | 1282      | 33.98                        | 61.98                        | $\nu(OC)$   |
| 28   | 1256vs            |                                                        | 1394        | 1266     | 262.41                       | 35.83                        | 1319      | 1275      | 7.93                         | 6.11                         | v(CC)       |
| 29   |                   |                                                        | 1354        | 1230     | 22.97                        | 1.61                         | 1316      | 1272      | 42.11                        | 5.68                         | δ(OHC)      |
| 30   |                   | 1192s                                                  | 1314        | 1193     | 29.94                        | 394.69                       | 1277      | 1234      | 276.34                       | 26.34                        | δ(CCC)      |
| 31   |                   |                                                        | 1309        | 1189     | 51.12                        | 4.21                         | 1265      | 1223      | 41.06                        | 29.76                        | δ(CCC)      |
| 32   | 1164w             | 1163m                                                  | 1284        | 1166     | 5.51                         | 53.38                        | 1215      | 1174      | 29                           | 1158.2                       | δ(CCC)      |
| 33   | 1160w             |                                                        | 1279        | 1161     | 4.97                         | 3.34                         | 1204      | 1164      | 10.76                        | 16.2                         | δ(CNC)      |
| 34   |                   |                                                        | 1267        | 1151     | 16.05                        | 14.23                        | 1190      | 1150      | 24.63                        | 277.79                       | δ(CCC)      |
| 35   |                   |                                                        | 1263        | 1147     | 12.8                         | 185.96                       | 1183      | 1143      | 16.22                        | 1427.75                      | δ(NCC)      |
| 36   |                   |                                                        | 1251        | 1136     | 5.09                         | 13.42                        | 1170      | 1131      | 0.72                         | 2.93                         | δ(ClCC)     |
| 37   | 1091m             | 1099w                                                  | 1192        | 1083     | 77.86                        | 43.42                        | 1128      | 1090      | 17.66                        | 11.31                        | δ(HCC)      |
| 38   |                   |                                                        | 1175        | 1067     | 17.46                        | 18.3                         | 1126      | 1088      | 5.42                         | 66.68                        | δ(HCC)      |
| 39   |                   |                                                        | 1170        | 1062     | 10.14                        | 9.17                         | 1097      | 1060      | 92.91                        | 127.9                        | δ(HCC)      |
| 40   | 1033s             |                                                        | 1154        | 1048     | 118.2                        | 11.18                        | 1062      | 1026      | 78.01                        | 8.76                         | δ(HCC)      |
| 41   |                   |                                                        | 1127        | 1023     | 1.22                         | 26.6                         | 1027      | 1027      | 34.18                        | 41.32                        | δ(HCH)      |
| 42   |                   |                                                        | 1111        | 1009     | 0.31                         | 2.11                         | 1021      | 987       | 0.24                         | 0.51                         | δ(CCC)      |
| 43   |                   |                                                        | 1103        | 1002     | 27.27                        | 6.25                         | 1005      | 971       | 5.34                         | 86.95                        | δ(HCH)      |
| 44   |                   |                                                        | 1101        | 1000     | 2.13                         | 1.11                         | 993       | 960       | 1.23                         | 39.13                        | δ(CCC)      |

174 Louis et al.

| 45 |       |      | 1091 | 991 | 0.48  | 2.25  | 972 | 939 | 0.65  | 7.57  | δ(CCC)   |
|----|-------|------|------|-----|-------|-------|-----|-----|-------|-------|----------|
| 46 | 974w  |      | 1075 | 976 | 0.36  | 2.32  | 961 | 929 | 0.34  | 22.35 | δ(HCC)   |
| 47 |       |      | 1067 | 969 | 3.37  | 0.65  | 942 | 910 | 0.96  | 6.22  | δ(HCC)   |
| 48 |       | 885w | 978  | 888 | 63.72 | 3.31  | 896 | 866 | 26.69 | 26.14 | δ(HCC)   |
| 49 |       |      | 946  | 859 | 29.84 | 10.76 | 855 | 826 | 61.03 | 5.17  | δ(HCC)   |
| 50 |       |      | 943  | 856 | 11.15 | 0.4   | 850 | 821 | 21.31 | 15.79 | δ(HCN)   |
| 51 |       |      | 931  | 845 | 24.06 | 0.45  | 847 | 818 | 10.24 | 7.49  | δ(CCC)   |
| 52 | 837vs |      | 928  | 843 | 1.11  | 10.95 | 832 | 804 | 10.14 | 4.35  | δ(CCO)   |
| 53 |       |      | 903  | 820 | 14.22 | 10.31 | 813 | 786 | 14.58 | 32.53 | δ(CCC)   |
| 54 | 762w  | 766w | 836  | 759 | 12.15 | 30.22 | 778 | 752 | 5.24  | 55.46 | δ(COH)   |
| 55 | 725w  |      | 826  | 750 | 8.33  | 8.55  | 739 | 714 | 5.77  | 3.22  | δ(CCN)   |
| 56 |       |      | 791  | 718 | 2.45  | 1.9   | 724 | 699 | 2.65  | 1.9   | τ(CCCC)  |
| 57 | 685w  |      | 740  | 672 | 13.65 | 6.89  | 690 | 667 | 19.94 | 7.97  | τ(CNCC)  |
| 58 | 636w  |      | 703  | 638 | 0.04  | 5.33  | 654 | 632 | 0.73  | 4.76  | τ(CCCC)  |
| 59 |       |      | 691  | 627 | 0.53  | 11.78 | 644 | 622 | 0.3   | 12.7  | τ(HCCC)  |
| 60 |       |      | 640  | 581 | 27.72 | 0.25  | 562 | 543 | 5.87  | 4.17  | τ(HCCO)  |
| 61 | 548m  |      | 586  | 532 | 15.87 | 1.58  | 552 | 533 | 24.66 | 2.65  | τ(HCCC)  |
| 62 |       |      | 575  | 522 | 6.79  | 4.12  | 523 | 505 | 7.07  | 1.95  | τ(HCCC)  |
| 63 | 499m  |      | 537  | 487 | 6.67  | 1.11  | 495 | 478 | 8.34  | 3.58  | τ(HCHO)  |
| 64 | 453w  |      | 488  | 443 | 5.11  | 3.62  | 475 | 459 | 17.68 | 11.76 | τ(CCCC)  |
| 65 |       |      | 472  | 428 | 3.07  | 9.18  | 432 | 417 | 6.2   | 25.17 | τ(HCHO)  |
| 66 |       |      | 460  | 417 | 0.49  | 0.44  | 423 | 408 | 0.06  | 0.6   | τ(CCCN)  |
| 67 |       |      | 445  | 404 | 18.49 | 0.46  | 415 | 401 | 4.7   | 12.63 | τ(CCCC)  |
| 68 | 399w  |      | 429  | 389 | 8.64  | 0.65  | 395 | 381 | 18.07 | 10.96 | τ(HCCO)  |
| 69 |       | 340w | 383  | 347 | 1.58  | 3.59  | 340 | 328 | 6.45  | 12.34 | τ(HCCC)  |
| 70 |       |      | 344  | 312 | 5.99  | 2.6   | 326 | 315 | 2.05  | 5.8   | τ(HCCC)  |
| 71 |       |      | 296  | 268 | 6.37  | 5.23  | 262 | 253 | 1.28  | 0.12  | τ(HCCC)  |
| 72 |       |      | 262  | 238 | 0.2   | 0.97  | 250 | 241 | 5.62  | 18.26 | τ(HCNC)  |
| 73 |       | 178m | 196  | 178 | 5.23  | 10.6  | 232 | 224 | 1.26  | 9.06  | τ(CCCC)  |
| 74 |       |      | 179  | 162 | 0.58  | 0.31  | 192 | 185 | 10.74 | 52.69 | τ(CCOC)  |
| 75 |       |      | 160  | 145 | 0.97  | 9.46  | 185 | 178 | 0.37  | 2.8   | τ(CCCO)  |
| 76 |       |      | 140  | 127 | 3.59  | 4.21  | 138 | 133 | 0.41  | 1.99  | τ(COHC)  |
| 77 |       | 104s | 95   | 86  | 1.33  | 2.34  | 103 | 99  | 0.8   | 3.7   | τ(CCNC)  |
| 78 |       |      | 53   | 48  | 2.4   | 1.99  | 81  | 78  | 1.68  | 3.3   | γ(ClCCC) |
| 79 |       |      | 40   | 36  | 0.46  | 3.4   | 45  | 43  | 0.44  | 2.1   | γ(CCCC)  |
| 80 |       |      | 37   | 33  | 1.03  | 3.85  | 38  | 36  | 0.78  | 9.9   | γ(NCCC)  |
| 81 |       |      | 31   | 28  | 1.52  | 1.85  | 30  | 29  | 0.21  | 1.2   | γ(COCC)  |

 $v = Stretching; \delta = in-plane bending; \gamma = out-of-plane bending: torsion; vs: very strong; s: strong; w: weak; m: medium.$ 

<sup>a</sup>IR intensity (K mmol<sup>-1</sup>); <sup>b</sup>Raman intensity (Arb. units).

weak bands in the region 3100-3000 cm<sup>-1</sup> due to C-H stretching vibrations [26]. In this region, the bands are not affected much by the nature of substituent. The C-H stretching modes usually appear with strong Raman intensity and are highly polarized. The bands appear in the whole range of the spectrum [27].

In the present investigation, the FT-IR and FT-Raman spectral wave numbers are assigned to the C-H stretching modes of the aromatic group of CBMA. The theoretically computed wavenumbers by HF/6-311G(d,p) method are found to be 3067, 3050, 3030, 3026, 3022, 2974, 2922, 2913 and 2869 cm<sup>-1</sup> whereas DFT/B3LYP/6-311G(d, p) method results the wave numbers at 3118, 3095, 3077, 3069, 3059, 3028, 2953, 2902 and 2900 cm<sup>-1</sup> that fall within the recorded spectral range.

The in-plane aromatic C-H bending vibrations occur in the region 1400-1000 cm<sup>-1</sup>. The C-H in plane bending vibrations are at 1478, 1464 and 1455 cm<sup>-1</sup>computed by HF and at 1456, 1441 and 1427 cm<sup>-1</sup> by B3LYP method, which shows an agreement with the medium FT-IR band at 1451 cm<sup>1</sup>.

**Methoxy group vibrations:** If the CH<sub>3</sub> group is directly attached to oxygen atom, the C-H bending and stretching bands

would shift their positions due to electronic effects [28]. This causes the O-CH<sub>3</sub> stretching bands to be spread over a larger region than that of the C-CH<sub>3</sub> group. The medium band is observed at 1295 cm<sup>-1</sup> in the FTIR spectrum. The mode Nos.6,11 and 14 show the C-H bonds.

**C-N and C=N vibrations:** The C-N stretching vibration [29] coupled with  $\delta$ (NH) is strongly active in the region [30] 1275 ± 55 cm<sup>-1</sup>. The C=N stretching skeletal bands are expected in the range 1672-1566 cm<sup>-1</sup> [31]. For the molecule CBMA, the FTIR spectrum shows the C-N band at 1160 and C=N band at 725 cm<sup>-1</sup>.

**C-Cl vibrations:** Mooney [32] assigned vibrations of C-X group (X = F, Cl, Br and I) in the frequency range of 1129-480 cm<sup>-1</sup>. The C-Cl stretching mode is reported at 738 cm<sup>-1</sup> for dichloromethane and scissoring mode  $\delta$ (C-Cl) at 284 cm<sup>-1</sup> [33-35] reported C-Cl stretching mode at 890 cm<sup>-1</sup>. For the CBMA, the C-Cl stretching frequency appears at 548 cm<sup>-1</sup> in the FTIR spectrum. HF method shows the C-Cl vibrations at 3050, 1136, 532, 268 and 48 cm<sup>-1</sup>. DFT/B3LYP method shows those vibrations at 3095, 1130, 533, 253 and 78 cm<sup>-1</sup>.

**NBO analysis:** The natural bond orbital (NBO) analysis is a method to study intra- and intermolecular bonding and interaction among bonds. It investigates charge transfer or conjugative interaction in molecular systems [36]. The NBO analysis was done by examining all possible interactions between 'filled' (donor) Lewis-type NBOs and 'empty' (acceptor) non-Lewis NBOs and estimating their energies by second order perturbation theory. A lone pair donor  $\rightarrow$  anti-bonding acceptor orbital interaction will weaken the bond which is associated with the anti-bonding orbital. Conversely, an interaction with a bonding pair as the acceptor can strengthen the bond [37]. The second order Fock-matrix evaluates the donor-acceptor interactions in the NBO basis. However, the strengths of these delocalization interactions (E<sub>2</sub>) are estimated by second order perturbation theory by using the following equation:

$$E_{2} = \Delta E_{ij} = q_{i} \frac{F(i,j)_{2}}{\varepsilon_{i} - \varepsilon_{i}}$$
(2)

where  $q_i$  is the donor orbital occupancy;  $\varepsilon_i$  and  $\varepsilon_j$  are the diagonal elements;  $F_{ij}$  is the off diagonal NBO Fock matrix element. For the larger  $E_2$  value, the donation tendency from electron donors to electron acceptors increases with the extent of conjugation of the whole system. The intramolecular interactions are formed by the orbital overlap between  $\sigma(C-C)$  and  $\sigma^*(C-C)$ ;  $\pi(C-C)$  and  $\pi^*(C-C)$  and LP(1), LP(2) and LP(3) bond orbital which results intramolecular charge transfer (ICT) making stabilization of the system.

In the CBMA molecule, the  $\pi$  electron delocalization is maximum around C2-C3, C4-C5, C16-C18 and C20-C22 distri-

buted to  $\pi^*$  antibonding of C1-C6, C4-C5, C20-C22 and C15-C17 with a stabilization energy of 21.76,19.57,21.98,21.55 and 21.48 KJ/mol as shown in Table-3. The electron density transfer observed from the interaction LP (3)Cl11  $\rightarrow \pi^*$ (C1-C6) results in stabilization energy of 12.57 KJ/mol. The charge transfer from the lone electron pair of LP (2)O29 atom to  $\pi^*$ (C20-C22) and  $\pi^*$ (C25-H27) antibonding orbital results in stabilization energy of 30.64 KJ/mol,5.64 KJ/mol.  $\pi^*$ (C1-C6) and  $\pi^*$ (C20-C22) of the NBO conjugated with  $\pi^*$ (C2-C3),  $\pi^*$ (C4-C5) and  $\pi^*$ (C5AC6) leads to an enormous stabilization energy of 213.88, 136.12 and 211.16 KJ/mol respectively. This strong stabilization represents a larger delocalization.

**Non-linear optical properties-first order hyperpolarizability:** Quantum chemical calculations explain the relationship between the electronic structure of the systems and its NLO response [38]. The computational methods help to determine molecular NLO properties in an inexpensive way to explain the molecules properties. The NLO activity explains optical modulation, optical switching, frequency shifting and optical logic for the communication, signal processing and optical interconnections [22,39].

The non-linear optical properties are analyzed by the polarization of the molecule in an external radiation field. For the weak polarization condition, dipolar interaction is demonstrated by Taylor series. The first static hyperpolarizability ( $\beta_0$ ) and its related properties such as static polarizability ( $\alpha$ ), hyperpolarizability ( $\beta$ ) and electric dipole moment ( $\mu$ ) have been calculated using HF/B3LYP/6-311G(d,p) levels. The first hyperpolarizability is a third rank tensor in the presence

|             | SECOND ORDER PERTURBATION ANALYSIS OF FOCK MATRIX IN NBO BASIS FOR CBMA |                  |          |                            |                              |                          |  |  |
|-------------|-------------------------------------------------------------------------|------------------|----------|----------------------------|------------------------------|--------------------------|--|--|
| Donor(i)    | Ed(i)(e)                                                                | Acceptor(j)      | ED(j)(e) | E(2) <sup>a</sup> (KJ/mol) | E(j)-E(i) <sup>b</sup> (a.u) | F(ij) <sup>c</sup> (a.u) |  |  |
| π(C1-C2)    | 1.969                                                                   | π*(C6-Cl11)      | 0.034    | 5.37                       | 0.84                         | 0.060                    |  |  |
| π(C1-C6)    | 1.677                                                                   | π*(C2-C3)        | 0.374    | 18.84                      | 0.30                         | 0.068                    |  |  |
|             |                                                                         | π*(C4-C5)        | 0.28     | 17.75                      | 0.31                         | 0.067                    |  |  |
| π(C2-C3)    | 1.631                                                                   | π*(C1-C6)        | 0.388    | 21.76                      | 0.27                         | 0.068                    |  |  |
|             |                                                                         | π*(C4-C5)        | 0.28     | 19.57                      | 0.29                         | 0.068                    |  |  |
|             |                                                                         | π*(C12-N14)      | 0.154    | 17.63                      | 0.29                         | 0.068                    |  |  |
| π(C4-C5)    | 1.668                                                                   | $\pi^{*}(C1-C6)$ | 0.388    | 21.98                      | 0.27                         | 0.070                    |  |  |
|             |                                                                         | π*(C2-C3)        | 0.374    | 19.02                      | 0.29                         | 0.067                    |  |  |
| π(C12-N14)  | 1.908                                                                   | π*(C15-C17)      | 0.388    | 10.42                      | 0.36                         | 0.059                    |  |  |
| π(C15-C17)  | 1.654                                                                   | π*(C16-C18)      | 0.301    | 19.6                       | 0.29                         | 0.068                    |  |  |
|             |                                                                         | π*(C20-C22)      | 0.395    | 18.42                      | 0.28                         | 0.065                    |  |  |
| π(C16-C18)  | 1.713                                                                   | π*(C15-C17)      | 0.388    | 17.72                      | 0.29                         | 0.065                    |  |  |
|             |                                                                         | π*(C20-C22)      | 0.395    | 21.55                      | 0.28                         | 0.071                    |  |  |
| π(C20-C22)  | 1.658                                                                   | π*(C15-C17)      | 0.388    | 21.48                      | 0.29                         | 0.072                    |  |  |
|             |                                                                         | π*(C16-C18)      | 0.301    | 16.23                      | 0.30                         | 0.063                    |  |  |
| LP(3)Cl11   | 1.924                                                                   | $\pi^{*}(C1-C6)$ | 0.388    | 12.57                      | 0.33                         | 0.063                    |  |  |
| LP(1)N14    | 1.891                                                                   | π*(C12-H13)      | 0.041    | 12.62                      | 0.73                         | 0.087                    |  |  |
|             |                                                                         | π*(C15-C17)      | 0.033    | 7.16                       | 0.91                         | 0.073                    |  |  |
| LP(1)O29    | 1.962                                                                   | π*(C20-C22)      | 0.03     | 7.22                       | 1.10                         | 0.080                    |  |  |
| LP(2)O29    | 1.838                                                                   | π*(C20-C22)      | 0.395    | 30.64                      | 0.34                         | 0.097                    |  |  |
|             |                                                                         | π*(C25-H27)      | 0.019    | 5.64                       | 0.69                         | 0.058                    |  |  |
|             |                                                                         | π*(C25-H28)      | 0.019    | 5.78                       | 0.69                         | 0.058                    |  |  |
| π*(C1-C6)   | 0.388                                                                   | π*(C2-C3)        | 0.374    | 213.88                     | 0.02                         | 0.085                    |  |  |
|             |                                                                         | π*(C4-C5)        | 0.28     | 136.12                     | 0.02                         | 0.080                    |  |  |
| π*(C20-C22) | 0.395                                                                   | π*(C16-C18)      | 0.301    | 211.16                     | 0.01                         | 0.082                    |  |  |

TARIE-3

 $E_{\rm D}$  means electron density; \*E(2) means energy of hyper conjugative interactions; \*Energy difference between donor and acceptor i and j NBO orbitals; °F(i, j) is the Fock matrix element between i and j NBO orbitals.

of an applied electric field. The 27 components of the 3D matrix which is given in the lower tetrahedral format can be reduced to 10 components because of the Kleinman symmetry [22].

The total static dipole moment  $(\mu)$ , the mean polarizability  $(\alpha_0)$ , the anisotropy of the polarizability  $(\Delta \alpha)$  and the mean first hyperpolarizability ( $\beta_0$ ) using the x, y and z components are defined as:

$$\mu = (\mu_x^2 + \mu_y^2 + \mu_z^2)^{1/2}$$
(3)

$$\alpha_{0} = (\alpha_{xx} + \alpha_{yy} + \alpha_{zz})/3 \tag{4}$$

$$\Delta \alpha = 2^{-1/2} \left[ (\alpha_{xx} - \alpha_{yy})^2 + (\alpha_{yy} - \alpha_{zz})^2 + (\alpha_{zz} - \alpha_{xx})^2 + 6\alpha_{zz}^2 + 6\alpha_{zy}^2 + 6\alpha_{zy}^2 \right]^{1/2}$$
(5)

$$\beta = (\beta_x^2 + \beta_y^2 + \beta_z^2)^{1/2}$$
(6)

Since the values are calculated in atomic units (a.u.), the reported values have been converted into electrostatic units (esu) (For  $\alpha$ , 1 a.u. = 0.1482 × 10<sup>-24</sup> esu; for  $\beta$ , 1 a.u. = 8.639  $\times 10^{-33}$  esu) [40]. The mean polarizability ( $\alpha_0$ ), total polarizability ( $\Delta \alpha$ ), total molecular dipole moment ( $\mu$ ) and first order hyperpolarizability ( $\beta$ ), of the CBMA in different media are shown in Table-4. Total dipole moment of CBMA molecule is three times greater than that of urea and first order hyperpolarizability approximately 70 times greater than that of urea (µ and  $\beta$  of urea are 1.3732 Debye and 0.3728 × 10<sup>-30</sup> esu respectively [41]). This result confirms the good non-linearity of the CBMA molecule.

#### **Electronic properties**

UV-visible spectral analysis: Ultraviolet spectral analysis of CBMA has been investigated in gas, methanol, ethanol, benzene, dichloroethane and dimethyl sulfoxide by theoretical calculation. TD-DFT/B3LYP/6-311G(d,p) calculations have

been used to determine the low-level excited states of CBMA. The theoretical UV spectra of CBMA are shown in Fig. 6. Calculations regarding the excitation energies, oscillator strength (f) and wavelength ( $\lambda$ ) have been carried out and the results were compared (Table-5) with the measured experimental wavelengths.



Fig. 6. Theoretical UV spectra of CBMA in different solvents

Based on the Frank-Condon principle, the maximum absorption peak ( $\lambda_{max}$ ) in a UV-visible spectrum corresponds to vertical excitation. The calculations performed for ethanol and methanol are very close to each other while comparing

| TABLE-4<br>ELECTRIC DIPOLE MOMENT, POLARIZABILITY AND FIRST ORDER<br>HYPERPOLARIZABILITY OF CBMA BY DFT/B3LYP/6-311G(d,p) METHOD |         |           |          |           |                |                    |
|----------------------------------------------------------------------------------------------------------------------------------|---------|-----------|----------|-----------|----------------|--------------------|
|                                                                                                                                  | Gas     | Methanol  | Ethanol  | Benzene   | Dichloroethane | Dimethyl sulfoxide |
| Dipole moment (µ)                                                                                                                | 3.514   | 4.491     | 4.472    | 3.921     | 4.362          | 4.51               |
| Polarizability                                                                                                                   |         |           |          |           |                |                    |
| 0′ <sub>xx</sub>                                                                                                                 | 384.015 | 485.8343  | 484.3936 | 433.7619  | 475.861        | 487.2472           |
| α <sub>xy</sub>                                                                                                                  | -1.6206 | -6.4663   | -6.3573  | -3.4004   | -5.745         | -6.5749            |
| $\alpha_{\rm vv}$                                                                                                                | 158.416 | 222.1806  | 220.8531 | 183.4727  | 213.352        | 223.5006           |
| 0′ <sub>xz</sub>                                                                                                                 | 0.2055  | 0.6699    | 0.6614   | 0.3881    | 0.6111         | 0.6782             |
| α <sub>vz</sub>                                                                                                                  | 2.6508  | 4.2248    | 4.1874   | 3.218     | 3.9801         | 4.2623             |
| Ω <sub>zz</sub>                                                                                                                  | 84.5107 | 109.1256  | 108.5103 | 93.1333   | 105.132        | 109.7429           |
| $\alpha_0$                                                                                                                       | 208.98  | 272.3802  | 271.25   | 236.78    | 264.78         | 273.49             |
| $\Delta \alpha$ (a.u)                                                                                                            | 270.245 | 334.8184  | 334.143  | 305.64    | 330.201        | 335.417            |
| $\Delta \alpha (esu \times 10^{-24})$                                                                                            | 40.05   | 49.61     | 49.55    | 45.29     | 48.93          | 49.71              |
| Hyperpolarizability                                                                                                              |         |           |          |           |                |                    |
| $\beta_{xxx}$                                                                                                                    | 3086.55 | 6644.7279 | 6586.306 | 4660.148  | 6243.6         | 6702.163           |
| $\beta_{xyy}$                                                                                                                    | -70.51  | -143.8972 | -142.271 | -98.0427  | -133.139       | -145.517           |
| β <sub>xzz</sub>                                                                                                                 | -46.26  | -72.7867  | -72.1461 | -56.0401  | -68.6366       | -73.43             |
| $\beta_{vvv}$                                                                                                                    | -50.72  | -86.6843  | -85.9062 | -63.6516  | -81.4195       | -87.4515           |
| $\beta_{yzz}$                                                                                                                    | -46.33  | 81.9285   | -81.0185 | -58.653   | -76.047        | -82.8429           |
| β <sub>xxv</sub>                                                                                                                 | -179.03 | -443.5372 | -437.653 | -276.9125 | -404.536       | -449.394           |
| β <sub>zzz</sub>                                                                                                                 | 32.42   | 55.31029  | 54.734   | 40.478    | 51.5829        | 55.8891            |
| β <sub>xxz</sub>                                                                                                                 | -163.55 | -366.509  | -362.202 | -242.7718 | -337.998       | -370.8             |
| $\beta_{vvz}$                                                                                                                    | -40     | -80.1164  | -79.1391 | -54.2357  | -73.7446       | -81.095            |
| β <sub>xyz</sub>                                                                                                                 | 57.62   | 120.1067  | 118.8923 | 82.6721   | 111.909        | 121.3073           |
| β (a.u)                                                                                                                          | 2987.49 | 6455.528  | 6412.16  | 4530.987  | 6078.59        | 6524.73            |
| $\beta$ (esu × 10 <sup>-30)</sup>                                                                                                | 25.8    | 55.77     | 55.39    | 37.57     | 52.5           | 56.36              |

| TABLE-5<br>CALCULATED WAVELENGTH (λ, nm), EXCITATION<br>ENERGIES (E, eV) AND OSCILLATOR STRENGTH |        |        |        |  |  |  |  |
|--------------------------------------------------------------------------------------------------|--------|--------|--------|--|--|--|--|
| $E(eV)$ $\lambda(nm)$ (f)                                                                        |        |        |        |  |  |  |  |
| Gas                                                                                              | 3.4040 | 364.19 | 0.5066 |  |  |  |  |
|                                                                                                  | 4.3380 | 285.77 | 0.2467 |  |  |  |  |
| Methanol                                                                                         | 3.3650 | 368.44 | 0.6168 |  |  |  |  |
|                                                                                                  | 4.3490 | 285.08 | 0.2928 |  |  |  |  |
| Ethanol                                                                                          | 3.3602 | 368.97 | 0.6238 |  |  |  |  |
|                                                                                                  | 4.3465 | 285.25 | 0.2968 |  |  |  |  |
| Benzene                                                                                          | 3.3296 | 372.37 | 0.6449 |  |  |  |  |
|                                                                                                  | 4.3176 | 287.16 | 0.3139 |  |  |  |  |
| Dichloroethane                                                                                   | 3.3468 | 370.46 | 0.6394 |  |  |  |  |
|                                                                                                  | 4.3376 | 285.84 | 0.3059 |  |  |  |  |
| Dimethyl                                                                                         | 3.3546 | 369.59 | 0.6360 |  |  |  |  |
| sufloxide                                                                                        | 4.3452 | 285.33 | 0.3031 |  |  |  |  |

with other solvents. The absorption maxima values of gas phase are smaller than that in the organic solvents. However, polar solvents such as methanol, ethanol *etc.*, may stabilize or destabilize the molecular orbital of a molecule either in the ground state or in excited state. The electronic absorption spectra of CBMA showed two bands at 245 and 365 nm. These excitations correspond to  $\pi$ - $\pi$ \* transition, which is more polar than the ground state.

**Frontier molecular orbital analysis:** Many organic molecules, containing conjugated  $\pi$ -electrons with large first hyperpolarizabilities are analyzed by means of vibrational spectroscopy [42,43]. In most of the cases, the strongest bands in the Raman spectrum are weak in the IR spectrum and *vice versa* even in the absence of inversion symmetry. The intramolecular charge transfer from the donor to accepter group can induce large variations in dipole moment and the molecular polarizability. The important frontier molecular orbital are the highest

occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO). These orbitals determine the way the molecule interacts with other species. The frontier orbital gap helps to analyze the chemical reactivity and kinetic stability of the molecule. A molecule with a small frontier orbital gap is more polarizable with a high chemical reactivity and low kinetic stability. It is also termed as a soft molecule [44]. The frontier molecular orbitals show an important role in the electronic, optical properties and chemical reactions [45,46]. The conjugated molecules are explained by HOMO-LUMO separation by the intramolecular charge transfer from the efficient electron-donor groups to the electron-acceptor groups through  $\pi$ -conjugated path [47].

The HOMO has an ability to donate an electron whereas LUMO is an electron acceptor. The HOMO and LUMO energies calculated by B3LYP/6-311G(d,p) method are shown in Table-6. This electronic absorption corresponds to the transition from the ground state to the first excited state depicted by one electron excitation from the HOMO to the LUMO. The energy of the HOMO and LUMO is directly related to the ionization potential and electron affinity respectively. The energy difference between HOMO and LUMO orbital is called as energy gap which is an important for structure stability [48] and is given in Table-6. The plots of HOMOs and LUMOs are shown in Fig. 7(a-f). The frontier energy gap of CBMA in gas, methanol, ethanol, benzene, dichloroethane and dimethyl sulfoxide are found to be 0.1419 eV, 0.1424 eV, 0.1423 eV, 0.142 eV, 0.142 eV and 0.1423 eV respectively obtained by DFT method using 6-311G(d,p) basis set. The HOMO is located whole of the molecules except some -C-H groups and LUMO is contributed by the whole of the molecules except methyl group.



Fig. 7. Frontier and second frontier molecular orbitals of CBMA in (a) gas, (b) methanol, (c) ethanol, (d) benzene, (e) dichloroethane and (f) dimethyl sulfoxide

| TABLE-6<br>CALCULATED ENERGY VALUES OF CBMA MOLECULES BY THE DFT/B3LYP METHOD USING 6-311G(d,p) BASIS SET |         |          |         |         |        |         |  |
|-----------------------------------------------------------------------------------------------------------|---------|----------|---------|---------|--------|---------|--|
|                                                                                                           | Gas     | Methanol | Ethanol | Benzene | DCIE   | DMSO    |  |
| E <sub>HOMO</sub>                                                                                         | -0.2127 | -0.2163  | -0.2162 | -0.2138 | -0.216 | -0.2164 |  |
| E <sub>LUMO</sub>                                                                                         | -0.0708 | -0.0739  | -0.0739 | -0.0718 | -0.074 | -0.0741 |  |
| $E_{HOMO} - E_{LUMO}$                                                                                     | 0.1419  | 0.1424   | 0.1423  | 0.1420  | 0.142  | 0.1423  |  |
| E <sub>HOMO-1</sub>                                                                                       | -0.2560 | -0.2602  | -0.2601 | -0.2576 | -0.260 | -0.2603 |  |
| E <sub>LUMO+1</sub>                                                                                       | -0.0273 | -0.0289  | -0.0289 | -0.0277 | -0.029 | -0.0289 |  |
| $E_{HOMO-1} - E_{LUMO+1}$                                                                                 | 0.2300  | 0.2313   | 0.2312  | 0.2299  | 0.231  | 0.2314  |  |
| E <sub>HOMO-2</sub>                                                                                       | -0.2621 | -0.2663  | -0.2662 | -0.2634 | -0.266 | -0.2664 |  |
| E <sub>LUMO+2</sub>                                                                                       | -0.0156 | -0.0192  | -0.0191 | -0.0167 | -0.019 | -0.0193 |  |
| $E_{HOMO-2} - E_{LUMO+2}$                                                                                 | 0.2470  | 0.2470   | 0.2470  | 0.2470  | 0.247  | 0.2470  |  |

Electrostatic potential, total electron density and molecular electrostatic potential: The molecular electrostatic potential surface is a visual method of mapping electrostatic potential onto the iso-electron density surface which simultaneously displays molecular electrostatic potential (electron + nuclei) distribution, dipole moments, size and shape [49]. Fig. 8 shows the electrostatic potential (ESP), the total electron density (TED) and molecular electrostatic potential (MEP) surfaces of the CBMA molecule by using B3LYP method. The colour scheme of electrostatic potential (Fig. 8a) shows the negative electrostatic potentials in nitrogen atoms (red colour) and slightly electron rich region in oxygen atom (yellow colour). Green areas cover the electrostatic potentials of the molecule which are close to zero (C-C and C-H bonds). The total electron density (TED) plots for CBMA show a uniform distribution (Fig. 8b) computed at 0.020 a.u. iso-density surface. The colour code of these maps is represented in the range between -4.037 e-4 (deepest red) and +4.037 e-4 (deepest blue) in the compound.

The molecular electrostatic potential V(r) is related to the electronic density, which helps to determine sites for electrophilic attack and nucleophilic reactions. Molecular electrostatic potential values are calculated using the equation [50]:

$$V(r) = \Sigma Z_{A} / |R_{A} - r| - \int \rho (r^{1}) / |r^{1} - r| d^{3}r^{1}$$
(7)

where  $Z_A$  is the charge of nucleus A located at  $R_A$ ,  $\rho(r^1)$  is the electronic density function of the molecule and  $r^1$  is the dummy integration variable. The colour code of these maps is in the range between -3.295 e-2 (deepest red) and +3.295 e-2 (deepest blue) in the compound (Fig. 8c). The maximum positive region is localized around the hydrogen atoms, indicating nucleophilic attack (blue colour) and the maximum negative region is localized on nitrogen atoms indicating electrophilic attack (red colour).

**Global reactivity descriptors:** The energy gap between HOMO and LUMO is used to calculate global chemical reactivity descriptors of molecules such as hardness  $(\eta)$ , chemical

potential ( $\mu$ ), softness (S), electro negativity ( $\chi$ ) and electrophilicity index ( $\omega$ ) [51,52]. Those descriptors are calculated on the basis of E<sub>HOMO</sub> and E<sub>LUMO</sub> using the below equations.

Using Koopman's theorem [53]:

The hardness of the molecule is

$$\eta = (I - A)/2$$
 (8)

The chemical potential of the molecule is

$$\mu = -(I + A)/2$$
 (9)

The softness of the molecule is

$$S = 1/2\eta \tag{10}$$

The electronegativity of the molecule is

$$\chi = (I + A)/2$$
 (11)

The electrophilicity index of the molecule is

$$\omega = \mu^{2/2} \eta \tag{12}$$

where I is the ionization potential and A is the electron affinity of the molecule. I and A can be expressed through HOMO and LUMO orbital energies as  $I = -E_{HOMO}$  and  $A = -E_{LUMO}$ . The ionization potential, electron affinity, hardness, softness, chemical potential, electro negativity and electrophilicity index of the title molecule calculated by DFT/B3LYP level of calculation in gas/methanol/ethanol/benzene/dichloroethane/ dimethyl sulfoxide environments are shown in Table-7. By considering the chemical hardness, large HOMO-LUMO gap represents a hard molecule and small HOMO-LUMO gap represents a soft molecule. The value of energy gap between the HOMO and LUMO in different environments is small which concludes that CBMA is soft molecule, which is evidenced from Table-7. The chemical softness is found to be 7.042 (DFT-Gas), 7.022 (methanol), 7.032 (ethanol), 7.042 (benzene), 7.032 (dichloroethane) and 7.032 (dimethyl sulfoxide), which is greater than that of chemical hardness.

Mulliken charge analysis: Atomic charge plays a significant role in the application of quantum mechanical calculations to



Fig. 8. (a) Electrostatic potential (ESP), (b) Electron density (ED) and (c) Molecular electrostatic potential map (MEP) of CBMA

| TABLE-7                             |                                                                   |          |         |         |         |         |  |  |
|-------------------------------------|-------------------------------------------------------------------|----------|---------|---------|---------|---------|--|--|
| 0                                   | GLOBAL CHEMICAL REACTIVITY DESCRIPTORS OF CBMA IN DIFFERENT MEDIA |          |         |         |         |         |  |  |
|                                     | Gas                                                               | Methanol | Ethanol | Benzene | DCIE    | DMSO    |  |  |
| Ionization potential (I)            | 0.2127                                                            | 0.2163   | 0.2162  | 0.2138  | 0.2157  | 0.2164  |  |  |
| Electron affinity (A)               | 0.0708                                                            | 0.0739   | 0.0739  | 0.0718  | 0.0735  | 0.0741  |  |  |
| Electro negativity $(\chi)$         | 0.1417                                                            | 0.1451   | 0.1451  | 0.1428  | 0.1446  | 0.1452  |  |  |
| Chemical potential (µ)              | -0.1417                                                           | -0.1417  | -0.1451 | -0.1428 | -0.1446 | -0.1452 |  |  |
| Chemical hardness $(\eta)$          | 0.071                                                             | 0.0712   | 0.0711  | 0.071   | 0.0711  | 0.0711  |  |  |
| Softness (S)                        | 7.042                                                             | 7.022    | 7.032   | 7.042   | 7.032   | 7.032   |  |  |
| Electrophilicity index ( $\omega$ ) | 0.1414                                                            | 0.141    | 0.1481  | 0.1436  | 0.147   | 0.1482  |  |  |

molecular systems. Mulliken atomic charges are calculated by analyzing the electron population of each atom as defined by the basis function [54]. In Fig. 9, the Mulliken atomic charges of CBMA calculated by DFT/B3LYP method using 6-311G(d,p) basis set are shown. The results are shown in Table-8. The magnitudes of the carbon atomic charges are reported to be either positive or negative, which are changing from 0.175 to -0.238. All the hydrogen atoms have a positive charge, whereas oxygen, nitrogen and chlorine have negative charges. The C22 has the maximum positive charge than other atoms since it is an acceptor atom and the atom O29 has a maximum negative charge since it is a donor.

**Thermodynamic properties:** On the basis of vibration analysis, the statistical thermodynamic functions such as heat capacity (C), enthalpy changes (H) and entropy changes (S) for CBMA molecule were obtained from the theoretical harmonic frequencies [55]. Table-9 showed that these thermodynamic parameter values are increasing with temperature ranging from 100 to 700 K. The correlation equations between heat capacity,



rig. ). Thistogram of calculated Mulliken charges for CDMA

enthalpy and entropy changes with temperatures were fitted by quadratic formulae and the corresponding fitting factors ( $\mathbb{R}^2$ ) for these thermodynamic properties are 0.9999, 0.9998 and 1.0000 respectively. The corresponding fitting equations are given below and the correlation graphs of those are shown in Fig. 10(a-c).

$$C = 2.708 + 0.217 \text{ T} - 5 \times 10^{-9} \text{ T}^2 \text{ (R}^2 = 0.9999)$$
(13)

| $H = 0.016 T + 5 \times 10^{-6} T^2 $ ( | $(R^2 = 0.9998)$ | (14) |
|-----------------------------------------|------------------|------|
|-----------------------------------------|------------------|------|

| MULLIK | MULLIKEN ATOMIC CHARGES OF CBMA CALCULATED BY DFT/B3LYP/6-311G(d,p) FOR DIFFERENT SOLVENTS |          |         |         |        |        |  |  |
|--------|--------------------------------------------------------------------------------------------|----------|---------|---------|--------|--------|--|--|
| Atoms  | Gas                                                                                        | Methanol | Ethanol | Benzene | DCIE   | DMSO   |  |  |
| 1C     | 0.021                                                                                      | 0.015    | 0.015   | 0.018   | 0.015  | 0.015  |  |  |
| 2C     | -0.065                                                                                     | -0.067   | -0.068  | -0.067  | -0.068 | -0.067 |  |  |
| 3C     | -0.147                                                                                     | -0.156   | -0.157  | -0.151  | -0.155 | -0.157 |  |  |
| 4C     | -0.018                                                                                     | -0.034   | -0.033  | -0.024  | -0.032 | -0.034 |  |  |
| 5C     | 0.021                                                                                      | 0.015    | 0.014   | 0.018   | 0.015  | -14    |  |  |
| 6C     | -0.231                                                                                     | -0.238   | -0.237  | -0.234  | -0.237 | -0.238 |  |  |
| 7H     | 0.119                                                                                      | 0.136    | 0.135   | 0.126   | 0.134  | 0.136  |  |  |
| 8H     | 0.095                                                                                      | 0.119    | 0.119   | 0.105   | 0.117  | 0.12   |  |  |
| 9H     | 0.109                                                                                      | 0.109    | 0.109   | 0.11    | 0.109  | 0.109  |  |  |
| 10H    | 0.122                                                                                      | 0.136    | 0.136   | 0.129   | 0.135  | 0.137  |  |  |
| 11Cl   | -0.066                                                                                     | -0.079   | -0.079  | -0.073  | -0.078 | -0.079 |  |  |
| 12C    | 0.139                                                                                      | 0.143    | 0.142   | 0.14    | 0.142  | 0.143  |  |  |
| 13H    | 0.073                                                                                      | 0.098    | 0.097   | 0.082   | 0.094  | 0.098  |  |  |
| 14N    | -0.324                                                                                     | -0.343   | -0.342  | -0.331  | -0.341 | -0.343 |  |  |
| 15C    | 0.049                                                                                      | 0.04     | 0.041   | 0.045   | 0.041  | 0.04   |  |  |
| 16C    | -0.052                                                                                     | -0.073   | -0.073  | -0.061  | -0.071 | -0.074 |  |  |
| 17C    | -0.068                                                                                     | -0.081   | -0.081  | -0.074  | -0.079 | -0.081 |  |  |
| 18C    | -0.092                                                                                     | -0.111   | -0.111  | -0.1    | -0.011 | -0.011 |  |  |
| 19H    | 0.098                                                                                      | 0.105    | 0.105   | 0.101   | 0.104  | 0.105  |  |  |
| 20C    | -0.0139                                                                                    | -0.151   | -0.15   | -0.145  | -0.149 | -0.15  |  |  |
| 21H    | 0.099                                                                                      | 0.121    | 0.12    | 0.107   | 0.118  | 0.121  |  |  |
| 22C    | 0.175                                                                                      | 0.172    | 0.173   | 0.174   | 0.173  | 0.172  |  |  |
| 23H    | 0.104                                                                                      | 0.113    | 0.112   | 0.108   | 0.112  | 0.113  |  |  |
| 24H    | 0.104                                                                                      | 0.129    | 0.128   | 0.114   | 0.126  | 0.129  |  |  |
| 25C    | -0.132                                                                                     | -0.14    | -0.14   | -0.136  | -0.139 | -0.14  |  |  |
| 26H    | 0.13                                                                                       | 0.137    | 0.137   | 0.134   | 0.136  | 0.137  |  |  |
| 27H    | 0.11                                                                                       | 0.123    | 0.122   | 0.116   | 0.121  | 0.123  |  |  |
| 28H    | 0.111                                                                                      | 0.123    | 0.123   | 0.116   | 0.121  | 0.123  |  |  |
| 290    | -0.346                                                                                     | -0.36    | -0.36   | -0.352  | -0.358 | -0.36  |  |  |

TADLE 0

| TABLE-9                                        |               |                |                       |  |  |  |  |  |  |
|------------------------------------------------|---------------|----------------|-----------------------|--|--|--|--|--|--|
| THERM                                          | MODYNAMIC PRO | OPERTIES OF CB | MA AT                 |  |  |  |  |  |  |
| DIFFERENT TEMPERATURES USING B3LYP/6-11G(d, p) |               |                |                       |  |  |  |  |  |  |
| T (K)                                          | C (cal/mol K) | S (cal/mol K)  | $\Delta H$ (kcal/mol) |  |  |  |  |  |  |
| 100                                            | 24.993        | 83.338         | 1.667                 |  |  |  |  |  |  |
| 200                                            | 41.456        | 105.65         | 4.979                 |  |  |  |  |  |  |
| 298.15                                         | 58.67         | 125.39         | 9.89                  |  |  |  |  |  |  |
| 300                                            | 58.99         | 125.75         | 9.998                 |  |  |  |  |  |  |
| 400                                            | 75.73         | 145.07         | 16.75                 |  |  |  |  |  |  |
| 500                                            | 89.97         | 163.55         | 25.06                 |  |  |  |  |  |  |
| 600                                            | 101.53        | 181.01         | 34.65                 |  |  |  |  |  |  |
| 700                                            | 110.86        | 197.39         | 45.29                 |  |  |  |  |  |  |
| 800                                            | 118.48        | 212.71         | 56.77                 |  |  |  |  |  |  |
| 900                                            | 124.8         | 227.04         | 68.95                 |  |  |  |  |  |  |
| 1000                                           | 130.09        | 240.47         | 81.69                 |  |  |  |  |  |  |



Fig. 10. Correlation graphs of (a) entropy *vs.* temperature, (b) heat capacity *vs.* temperature and (c) enthalpy *vs.* temperature for CBMA

 $S = 61.11 + 0.230T - 5 \times 10^{-5}T^2 \quad (R^2 = 1.0000) \quad (15)$ 

These data provided helpful information for the further study on CBMA molecule. All thermodynamic calculations have been done in gas phase and they could not be used in solutions.

### Conclusion

Single crystals of N-(4-chlorobenzylidene)-4-methoxyaniline (CBMA) were grown by solution growth technique. The molecular geometry and wave numbers were calculated

using HF and DFT/B3LYP with 6-311G(d,p) basis set. The FT-IR and FT-Raman spectra of CBMA were studied. The UV spectra of CBMA were studied in different solvents such as methanol, ethanol, benzene, dichloroethane and dimethyl sulfoxide. The value of the energy separation between the HOMO and LUMO was found to be very small and this energy gap gave significant information about the title compound. So, it is concluded that CBMA molecule was found to be soft. From the NBO analysis, the  $\pi^* \rightarrow \pi^*$  interaction revealed the strongest stabilization to the system. The calculated first order hyperpolarizability was found to be much greater than urea, which proved that the CBMA is a good non-linear optical material. The MEP map showed the maximum positive region localized around the hydrogen atoms and the maximum negative region localized on nitrogen atom. The chemical hardness, chemical softness and electrophilicity index were calculated. The thermodynamic properties like heat capacity, enthalpy and entropy were calculated in the temperature range from 100 to 1000 K.

## A C K N O W L E D G E M E N T S

One of the authors (A.S.H) is grateful to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for sanctioning the financial assistance for the project with F.No. SR/FTP/PS-049/2013.

#### REFERENCES

- F.F. Jian, R.R. Zhuang, K.F. Wang, P.S. Zhao and H. Xiao, *Acta Cryst.*, E62, 03198 (2006);
  - https://doi.org/10.1107/S1600536806025074.
- M.T.H. Tarafder, M.A. Ali, D.J. Wee, K. Azahari, S. Silong and K. Crouse, *Transition Met. Chem.*, 25, 456 (2000); https://doi.org/10.1023/A:1007062409973.
- 3. P. Deschamps, P.P. Kulkarni and B. Sarkar, *Inorg. Chem.*, **42**, 7366 (2003); https://doi.org/10.1021/ic034760x.
- Z. Rozwadowski, E. Majewski, T. Dziembowska and P.E. Hansen, J. Chem. Soc. Perkin Trans. II, 2809 (1999); https://doi.org/10.1039/a903200b.
- S. Kumar, D.G. Ladha, P.C. Jha and N.K. Shah, *Int. J. Corros.*, Article ID 819643 (2013);

https://doi.org/10.1155/2013/819643.

- D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987.
- P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, Wiley, New York (1991).
- P. Srinivasan, T. Kanagasekaran and R. Gopalakrishnan, *Cryst. Growth* Des., 8, 2340 (2008); https://doi.org/10.1021/cg701143n.
- G. Zhang, M. Liu, D. Xu, D. Yuan, W. Sheng and J. Yao, J. Mater. Sci. Lett., 19, 1255 (2000);
- https://doi.org/10.1023/A:1006733831655. 10. R.W. Munn and C.N. Ironiside, Principles and Applications of Non-Linear Optical Materials, Chapman and Hall, London (1993).
- K. Naseema, V. Rao, K.V. Sujith and B. Kalluraya, *Curr. Appl. Phys.*, 10, 1236 (2010); https://doi.org/10.1016/j.cap.2010.02.050.
- 12. S. Leela, K. Ramamurthi and G. Bhagavannarayana, *Spectrochim. Acta* A, **74**, 78 (2009);
- https://doi.org/10.1016/j.saa.2009.05.028.
   S. Leela, T.D. Rani, A. Subashini, S. Brindha, R.R. Babu and K. Ramamurthi, *Arab. J.Chem.*, **10(Suppl.2)**, S3974 (2017); https://doi.org/10.1016/j.arabjc.2014.06.008.
- K. Srinivasan, K. Sankaranarayanan, S. Thangavelu and P. Ramasamy, *J. Cryst. Growth*, 212, 246 (2000); <u>https://doi.org/10.1016/S0022-0248(00)00300-6</u>.

- A. Subashini, G. Bhagavannarayana and K. Ramamurthi, *Spectrochim. Acta A*, 82, 91 (2011); https://doi.org/10.1016/j.saa.2011.07.004.
- X.Y. Ren, Y.F. Ding and F.F. Jiana, Acta Cryst., E64, o1793 (2008); https://doi.org/10.1107/S1600536808026111.
- P. Hohenberg and W. Kohn, *Phys. Rev.*, **136(3B)**, B864 (1964); <u>https://doi.org/10.1103/PhysRev.136.B864</u>.
- 18. A. Becke, J. Chem. Phys., 98, 5648 (1993);
- https://doi.org/10.1063/1.464913.
- C. Lee, W. Yang and R.G. Parr, *Phys. Rev.*, B37, 785 (1988); <u>https://doi.org/10.1103/PhysRevB.37.785</u>.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT (2009).
- 21. E.D. Glendening, C.R. Landis and F. Weinhold, *Comput. Mol. Sci.*, **2**, 1 (2012);
- https://doi.org/10.1002/wcms.51.
- 22. D.A. Kleinman, Phys. Rev., 126, 1977 (1962);
- https://doi.org/10.1103/PhysRev.126.1977.
  23. S. Shen, G.A. Guirgis and J.R. Durig, *Struct. Chem.*, 12, 33 (2001); https://doi.org/10.1023/A:1009258017813.
- D. Michalska and R. Wysokinski, *Chem. Phys. Lett.*, 403, 211 (2005); https://doi.org/10.1016/j.cplett.2004.12.096.
- L.E. Sutton, Tables of Interatomic Distances, Chemical Society, London (1958).
- S. Muthu, G. Ramachandran and J. Uma maheswari, *Spectrochim. Acta* A, 93, 214 (2012);
- https://doi.org/10.1016/j.saa.2012.02.107.
- G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, NewYork (1969).
- B.C. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press, Washington DC (1999).
- 29. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
- A.S. El-Shahawy, S.M. Ahmed and N.K. Sayed, *Spectrochim. Acta A*, 66, 143 (2007);
  - https://doi.org/10.1016/j.saa.2006.02.034.
- R.M. Silverstein, G.C. Bassler and T.C. Morril, Spectrometric Identification of Organic Compounds, John Wiley & Sons Inc., Singapore, edn 5 (1991).
- E.F. Mooney, Spectrochim. Acta A, 19, 877 (1963); https://doi.org/10.1016/0371-1951(63)80175-7.
- N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Boston, edn 3 (1990).

- P. Pazdera, H. Divisová, H. Havlisová and P. Borek, *Molecules*, 5, 189 (2000); https://doi.org/10.3390/50200189.
- H. Divisová, H. Havlisová, P. Borek and P. Pazdera, *Molecules*, 5, 1166 (2000);
- https://doi.org/10.3390/51001166.
  36. M. Snehalatha, C. Ravikumar, I.H. Joe, N. Sekar and V.S. Jayakumar, *Spectrochim. Acta A*, **72**, 654 (2009);
- https://doi.org/10.1016/j.saa.2008.11.017. 37. K. Govindarasu, E. Kavitha and N. Sundaraganesan, *Spectrochim. Acta A*,
  - **133**, 417 (2014); https://doi.org/10.1016/j.saa.2014.06.040.
- C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot and A. Collet, *J. Am. Chem. Soc.*, **116**, 2094 (1994); https://doi.org/10.1021/ja00084a055.
- V.M. Geskin, C. Lambert and J. Bredas, J. Am. Chem. Soc., 125, 15651 (2003);
- https://doi.org/10.1021/ja035862p. 40. M. Karabacak, Z. Cinar and M. Cinar, *Spectrochim. Acta A*, **85**, 241 (2012); https://doi.org/10.1016/j.saa.2011.10.001.
- 41. K. Govindarasu and E. Kavitha, *Spectrochim. Acta A*, **122**, 130 (2014); https://doi.org/10.1016/j.saa.2013.10.122.
- T. Vijayakumar, I.H. Joe, C.P. Reghunadhan Nair and V.S. Jayakumar, *Chem. Phys.*, 343, 83 (2008); <u>https://doi.org/10.1016/j.chemphys.2007.10.033</u>.
- M.A. Palafox, Int. J. Quantum Chem., 77, 661 (2000); https://doi.org/10.1002/(SICI)1097-461X(2000)77:3<661::AID-QUA7>3.0.CO;2-J.
- 44. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley & Sons, New York (1976).
- T. Karakurt, M. Dincer, A. Cetin and M. Sekerci, *Spectrochim. Acta A*, 77, 189 (2010);
- https://doi.org/10.1016/j.saa.2010.05.006.
  46. C.H. Choi and M. Kertesz, J. Phys. Chem. A, 101, 3823 (1997); https://doi.org/10.1021/jp970620v.
- 47. D.F.V. Lewis, C. Ioannides and D. Parke, *Xenobiotica*, **24**, 401 (1994); https://doi.org/10.3109/00498259409043243.
- 48. V. Balachandran and V. Karunakaran, *Spectrochim. Acta A*, **106**, 284 (2013); https://doi.org/10.1016/j.saa.2012.12.070.
- P. Politzer and J.S. Murray, *Theor. Chem. Acc.*, **108**, 134 (2002); https://doi.org/10.1007/s00214-002-0363-9.
- 50. R. Parr, L. Szentpaly and S. Liu, *Am. Chem. Soc.*, **121**, 1922 (1999); https://doi.org/10.1021/ja983494x.
- P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u.
- K. Govindarasu and E. Kavitha, J. Mol. Struct., 1088, 70 (2015); https://doi.org/10.1016/j.molstruc.2015.02.008.
- 53. T.A. Koopmans, *Physica*, **1**, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2.
- D.A. Dhas, I.H. Joe, S.D.D. Roy and T.H. Freeda, *Spectrochim. Acta A*, 77, 36 (2010);

https://doi.org/10.1016/j.saa.2010.04.020.

 J.B. Ott and J. Boerio-Goates, Chemical Thermodynamics: Advanced Applications, Calculations from Statistical Thermodynamics, Academic Press (2000).