www.asianpubs.org

Synthesis, Structural, Spectral, Natural Bond Orbital, Thermodynamic Properties and First Order Hyperpolarizability Analysis of N -(4-Chlorobenzylidene)-4-methoxyaniline

Golda Louis and A.S. Haja Hameed ${ }^{\text {区 }}$

Asian Journal of Organic \& Medicinal Chemistry

Volume: 2

Year: 2017
Issue: 4
Month: October-December
pp: 169-181
DOI: https://doi.org/10.14233/ajomc.2017.AJOMC-P88

Received: 8 June 2017
Accepted: 28 November 2017
Published: 29 December 2017

A potential non-linear optical (NLO) material N-(4-chlorobenzylidene)-4-methoxyaniline (CBMA) was synthesized by the condensation reaction between p-chlorobenzaldehyde and p-methoxyaniline. The CBMA crystal was grown by slow evaporation method for the period of 30 days. The optimized geometry and structural features of the title compound CBMA were thoroughly described with the FT-Raman and FT-IR spectra calculated by the HF/DFT/B3LYP methods using $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ as basis set. The theoretical, experimental FT-IR and FT-Raman spectra were compared. A natural bond orbital (NBO) study was carried out to analyze the effects of intramolecular charge transfer. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer were discussed. The first order hyper polarizability $\left(\beta_{0}\right)$ and related properties $\left(\beta, \alpha_{0}\right.$ and $\left.\mu\right)$ of CBMA were calculated. Molecular electrostatic potential was studied using theoretical calculations. The thermodynamic properties (heat capacity, entropy and enthalpy) at different temperatures were also calculated.

K E Y W OR D S

N-(4-Chlorobenzylidene)-4-methoxyaniline, HF, DFT/B3LYP, Molecular electrostatic potential, Hyperpolarizability.

Author affiliations:

PG and Research Department of Physics, Jamal Mohamed College, Tiruchirappalli-620 020, India

[^0]Fax: +91-431-233145
Tel: +91 431 2331135; +91 4312332235
E-mail: hajahameed2001@gmail.com

INTRODUCTION

Schiff bases have been used as ligands in the field of coordination chemistry [1] and have antimicrobial [2] and anticancer applications [3]. Schiff base compounds make an interest by the formation of intramolecular hydrogen bonds by electron coupling between acid-base centers [4] and corrosion inhibition mechanism [5]. The electron donor and the acceptor groups connected through a π conjugated chain constitute a potential non-linear optical (NLO) or an electro-optical material. The synthesis of organic molecules exhibiting NLO properties has been encouraged by their optical and electronic applications [6,7]. Organic molecules with significant non-linear optical activity generally consist of π-electron conjugated moiety which is substituted by an electron donor group on one end of the conjugated structure and an acceptor group on the other end. It makes a push-pull conjugated structure. Both ends of the π-bond system functionalizing with appropriate electron donor and acceptor groups lead to an increase in optical non-
linearity [8-11]. For effective second harmonic generation (SHG), one requires a highly polarizable molecular system with asymmetric charge distribution in the molecule. Benzylideneaniline (BA) derivatives are successful examples for preparing high non-linear optically active crystals [12-15]. Among many NLO crystals, N -(4-chlorobenzylidene)-4-methoxyaniline (CBMA) is one of benzylideneaniline derivative NLO crystals, which belongs to the non-centrosymmetric orthorhombic space group Pna_{1}. The cell dimensions [16] are $\mathrm{a}=6.11 \AA, \mathrm{~b}=7.34$ $\AA, c=27.47 \AA$ and $V=1230.9 \AA^{3}$.

In this paper, we have performed geometry optimization calculations for the CBMA molecule by using HF and DFT/ B3LYP methods with 6-311G(d,p) basis set. We have accomplished an experimental/theoretical analysis of the vibrational spectra. Also, the paper explores the molecular dynamics and the structural parameters that concern the chemical behaviour.

EXPERIMENTAL

Synthesis: N-(4-Chlorobenzylidene)-4-methoxyaniline (CBMA) was synthesized by the condensation reaction between p-chlorobenzaldehyde and p-methoxyaniline in equimolar ratio [16]. The reaction mixture was refluxed for 8 h and the solution was filtered using a Whatmann filter paper and the resulting product N -(4-chlorobenzylidene)-4-methoxyaniline was obtained. The schematic diagram of synthesizing CBMA material is shown in Fig. 1. The purity of the synthesized salt was improved by successive recrystallization processes in ethanol and acetone (1:1) at room temperature. A transparent single crystal grown for the period of 30 days by slow evaporation at room temperature is shown in Fig. 2.

Fig. 1. Schematic of synthesizing CBMA material

Fig. 2. Grown crystal of CBMA

FT-IR and FT-Raman spectral measurements: The FTIR spectrum of CBMA sample was recorded in the range of $4000-400 \mathrm{~cm}^{-1}$ by Perkin Elmer, RXI model FT-IR spectrometer using KBr pellet technique. FT-Raman spectrum of CBMA sample was recorded using 1064 nm line of Nd:YAG laser as the excitation wavelength in the region $3500-50 \mathrm{~cm}^{-1}$ by BRUKER RFS 27: FT-Raman spectrometer.

Computational details: The optimization of the molecular structure and its vibrational harmonic frequencies of CBMA were calculated using HF/DFT method [17] with the Becke's three-parameter hybrid functional (B3) [18] for the exchange part and the Lee-Yang-Parr (LYP) correlation function [19] using the Gaussian 09 program [20]. At first, the molecule N -(4-chlorobenzylidene)-4-methoxyaniline was optimized. Then the optimized structural parameters were calculated. The vibrational wavenumber assignments were done. The calculated IR spectrum of CBMA was plotted using Origin Pro 8.1 and compared with the experimental FT-IR spectrum.

The natural bonding orbital (NBO) calculations [21] were performed using Gaussian 09 [20] to understand different second order interactions between the vacant orbitals of one subsystem and filled orbitals of another subsystem. UV-visible spectra, electronic transitions, excitation energies and oscillator strengths were computed with the time-dependent DFT method. The HOMO and LUMO energies were determined. To investigate the reactive sites of the title compound, the MEP was evaluated using the DFT/B3LYP method. The contribution of the group to a molecular orbital was analyzed using Mulliken population analysis. The first order hyperpolarizability (β_{0}) and related properties (β, α_{0} and μ) were calculated using $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set based on the finite-field approach [22]. The thermodynamic functions such as heat capacity, entropy and enthalpy were analyzed for different temperatures.

Prediction of Raman intensities: The measured Raman spectrum is given by the equation [23,24]. The Raman activities (Si) calculated by Gaussian 09 program [20] have been converted to corresponding Raman intensities $\left(\mathrm{I}^{\mathrm{R}}\right)$. The theoretical Raman intensity (I^{R}) that simulates is given by

$$
\begin{equation*}
\mathrm{I}_{\mathrm{i}}^{\mathrm{R}}=\mathrm{C}\left(v_{0}-v_{\mathrm{i}}\right)^{4} v_{\mathrm{i}}^{-1} \mathrm{~B}_{\mathrm{i}}^{-1} \mathrm{~S}_{\mathrm{i}} \tag{1}
\end{equation*}
$$

where B_{i} is a temperature factor for the intensity contribution of excited vibrational states and the excitation frequency v_{0} $=9398.5 \mathrm{~cm}^{-1}$ corresponds to the wavelength of 1064 nm of Nd : YAG laser, v_{i} is the frequency of normal mode $\left(\mathrm{cm}^{-1}\right)$, while S_{i} is the Raman scattering activity of the normal mode Qi. I_{i}^{R} is given in arbitrary units (C is a constant equal 10^{-12}). Theoretical Raman intensities have been computed assuming B_{i} equal to 1. The theoretical Raman spectra have been calculated using HF and DFT/B3LYP/6-311G(d,p).

RESULTS AND DISCUSSION

Structural analysis: The optimized molecular structure of N -(4-chlorobenzylidene)-4-methoxyaniline (CBMA) is shown in Fig. 3. The geometrical parameters (bond lengths, bond angles and dihedral angles) obtained by the HF and DFT-B3LYP/6-311G(d,p) basis set calculations are represented in Table-1. From Table-1, most of the bond lengths are slightly longer than the experimental values and the bond angles are

TABLE-1
CALCULATED OPTIMIZED PARAMETER VALUES OF CBMA [BOND LENGTHS (\AA) AND ANGLES $\left({ }^{\circ}\right)$

Bond length	$\begin{gathered} \text { DFT } \\ \text { B3LYP } \end{gathered}$	HF	$\begin{gathered} \text { EXP. } \\ {[\text { Ref. 16] }} \end{gathered}$	Bond angle	B3LYP	HF	$\begin{gathered} \text { EXP. } \\ {[\text { Ref. 16] }} \end{gathered}$	Dihedral angle	B3LYP	HF
C1-C2	1.395	1.385	1.378	C2-C1-C6	119.99	118.86	119.42	C6-C1-C2-C3	0.032	1.0115
C1-C6	1.394	1.378	1.371	C2-C1-H7	119.99	120.84	120.30	C6-C1-C2-H8	179.95	79.94
C1-H7	1.099	1.073	0.930	C6-C1-H7	120.00	120.28	120.30	H7-C1-C2-C3	-179.97	. 179.9
C2-C3	1.394	1.386	1.381	C1-C2-C3	120.00	120.97	121.10	H7-C1-C2-H8	-0.05	. 0.035
C2-H8	1.099	1.076	0.930	C1-C2-H8	119.98	119.08	119.50	C2-C1-C6-C5	0.014	0.005
C3-C4	1.395	1.393	1.386	C3-C2-H8	120.01	119.93	119.50	C2-C1-C6-Cl11	179.98	79.96
C3-C12	1.540	1.477	1.463	C2-C3-C4	119.99	119.06	118.70	H7-C1-C6-C5	-179.97	79.98
C4-C5	1.394	1.378	1.373	C2-C3-C12	120.01	119.51	119.87	H7-C1-C6-Cl1 1	-0.005	. 0.051
C4-H9	1.099	1.073	0.93	C4-C3-C12	119.99	121.42	121.40	C1-C2-C3-C4	-0.056	-0.045
C5-C6	1.395	1.386	1.388	C3-C4-C5	119.99	120.53	120.70	C1-C2-C3-C12	179.96	79.89
C5-H10	1.099	1.073	0.93	C3-C4-H9	119.98	119.06	119.60	H8-C2-C3-C4	-179.97	. 179.9
C6-C111	1.760	1.743	1.732	C5-C4-H9	120.02	120.39	119.60	H8-C2-C3-C12	-0.141	-0.032
C12-H13	1.098	1.086	0.93	C4-C5-C6	120.00	119.31	119.50	C2-C3-C4-C5	0.034	0.064
C12-N14	1.325	1.251	1.255	C4-C5-H10	120.01	120.75	120.30	C2-C3-C4-H9	-179.99	. 179.9
N14-C15	1.470	1.409	1.415	C6-C5-H10	119.98	119.94	120.30	C12-C3-C4-C5	-179.98	. 179.8
C15-C16	1.395	1.390	1.386	C1-C6-C5	120.00	121.25	120.50	C12-C3-C4-C9	0.1876	1.1207
C15-C17	1.394	1.388	1.402	C1-C6-Cl11	120.00	119.45	119.55	C2-C3-C12-H13	0.474	1.098
C16-C18	1.394	1.380	1.387	C5-C6-Cl11	119.99	119.28	119.55	C2-C3-C12-N14	-178.64	. 178.1
C16-H19	1.099	1.074	0.930	C3-C12-H13	114.56	115.45	118.60	C4-C3-C12-H13	-179.98	. 178.9
C17-C20	1.395	1.385	1.375	C3-C12-N14	122.71	122.56	122.78	C4-C3-C12-N14	1.22	1.83
C17-H21	1.099	1.075	0.930	H13-C12-N14	122.71	121.98	118.60	C3-C4-C5-C6	-0.121	. 0.047
C18-C22	1.395	1.386	1.377	C12-N14-C15	121.05	120.24	121.00	C3-C4-C5-H10	179.95	. 179.9
C18-H23	1.099	1.075	0.930	N14-C15-C16	119.99	117.79	116.83	H9-C4-C5-C6	179.97	79.95
C20-C22	1.394	1.381	1.386	N14-C15-C17	124.23	123.34	125.31	H9-C4-C5-H10	0.0463	0.004
C20-H24	1.099	1.075	0.930	C16-C15-C17	118.15	118.83	117.86	C4-C5-C6-C1	0.0293	1.0126
C22-029	1.54	1.361	1.366	C15-C16-C18	121.06	120.67	122.00	C4-C5-C6-Cl11	-179.95	. 179.9
C25-H26	1.117	1.081	0.960	C15-C16-H19	118.26	118.73	119.00	H10-C5-C6-C1	179.97	79.96
C25-H27	1.117	1.086	0.960	C18-C16-H19	121.17	120.58	119.00	H10-C5-C6-Cl11	-0.0273	-0.003
C25-H28	1.117	1.086	0.960	C15-C17-C20	120.00	120.50	120.27	C3-C12-N14-C15	-177.33	. 178.6
C25-O29	1.500	1.405	1.414	C15-C17-H21	118.91	120.04	119.90	H13-C12-N14-C15	3.626	2.216
				C20-C17-H21	119.90	119.43	119.90	C12-N14-C15-C16	-148.45	. 139.3
				C16-C18-C22	120.28	120.08	119.11	C12-N14-C15-C17	34.19	+2.817
				C16-C18-H23	120.01	120.62	120.40	N14-C15-C16-C18	179.86	79.96
				C22-C18-H23	119.99	119.28	120.40	N14-C15-C16-H19	0.714	0.826
				C17-C20-C22	119.88	120.18	120.82	C17-C15-C16-C18	-2.61	. 2.074
				C17-C20-H24	119.13	120.55	119.60	C17-C15-C16-H19	178.23	78.79
				C22-C20-H24	120.01	119.25	119.60	N14-C15-C17-C20	178.93	79.19
				C18-C22-C20	119.39	119.68	119.91	C14-C15-C17-H21	1.36	0.841
				C18-C22-O29	124.77	120.26	125.07	C16-C15-C17-C20	1.59	1.349
				C20-C22-O29	120.02	120.04	115.02	C16-C15-C17-C21	-175.96	-177
				H26-C25-H27	108.20	109.35	109.50	C15-C16-C18-C22	1.746	1.47
				H26-C25-H28	108.19	109.31	109.50	C15-C16-C18-H23	-179.04	. 178.1
				H26-C25-O29	105.84	106.89	109.50	H19-C16-C18-C22	-179.97	. 179.4
				H27-C25-H28	109.36	108.98	109.50	H19-C16-C18-H23	0.041	0.912
				H27-C25-O29	111.46	111.06	109.50	C15-C17-C20-C22	-0.037	. 0.025
				H28-C25-O29	111.53	111.18	109.50	C15-C17-C20-H24	179.97	79.72
				C22-O29-C25	118.50	115.72	118.19	H21-C17-C20-C22	177.87	78.33
								H21-C17-C20-H24	-1.277	-1.911
								C16-C18-C22-C20	0.034	. 0.114
								C16-C18-C22-O29	-179.99	. 179.1
								H23-C18-C22-C20	-179.98	79.56
								H23-C18-C22-O29	0.022	0.562
								C17-C20-C22-C18	-1.21	-0.603
								C17-C20-C22-O29	179.82	178.4
								H24-C20-C22-C18	177.93	79.64
								H24-C20-C22-O29	-1.03	-1.35
								C18-C22-O29-C25	-90.07	. 87.19
								C20-C22-O29-C25	89.89	93.79
								H26-C25-O29-C22	179.99	79.91
								H27-C25-O29-C22	-59.99	. 60.86
								H28-C25-O29-C22	59.99	60.68

Fig. 3. Theoretical optimized geometric structure with atoms numbering of CBMA
slightly varied from the experimental ones because the states of molecules are different during experimental and theoretical processes. The calculated geometrical parameters showed a good approximation and they can be used to calculate thermodynamic properties and vibrational frequencies, etc.

In the benzene ring, C-C bond length is about $1.396 \AA$ [25]. For CBMA, the C - C bond length of the benzene ring varies from 1.394-1.395 Å by B3LYP method, 1.378-1.393 Å by HF method and 1.371-1.402 \AA by experimental readings. The C-C bond length of the benzene ring is not similar due to the substitution of methoxy group, chlorine and nitrogen. The aromatic C-H bond lengths such as $\mathrm{C} 1-\mathrm{H} 7=1.099 / 1.073 \AA, \mathrm{C} 2-\mathrm{H} 8=1.099 / 1.076$ $\AA, \mathrm{C} 4-\mathrm{H} 9=1.099 / 1.073 \AA, \mathrm{C} 5-\mathrm{H} 10=1.099 / 1.073 \AA, \mathrm{C} 17-\mathrm{H} 21$ $=1.099 / 1.075 \AA, \mathrm{C} 20-\mathrm{H} 24=1.099 / 1.075 \AA, \mathrm{C} 16-\mathrm{H} 19=1.099 /$ $1.074 \AA$ and C18-H23 = 1.099/1.075 \AA are calculated by B3LYP and HF and methods respectively, which is in good agreement with the literature value $(0.930 \AA)$ [16]. There are small increments in the C -H bond lengths of the methoxy group (C25$\mathrm{H} 26=1.117 / 1.081 / 0.96 \AA, \mathrm{C} 25-\mathrm{H} 27=1.117 / 1.086 / 0.96 \AA$ and C25-H28 = 1.117/1.086/0.96 Å calculated by B3LYP, HF and experimental methods, respectively).

The bond length of N14-C12 is 1.325/1.251/1.255 \AA calculated by B3LYP, HF and experimental methods respectively, which is shorter than the bond length of N14-C15 (1.47/1.409/ $1.415 \AA$ by B3LYP, HF and experimental methods); this is due to the double bond between N14 and C12. The C22-O29, C25-O29 bond lengths are 1.54/1.361/1.366 \AA and 1.5/1.405/ $1.414 \AA$ calculated by B3LYP, HF and experimental methods respectively. The bond length of $\mathrm{C} 6-\mathrm{Cl} 11$ is $1.760 / 1.743 / 1.732$ Å calculated by B3LYP, HF and experimental methods, respectively and this is the longest bond while comparing with all other bonds in the title molecule. Due to the electron donating nature of methoxy group, the bond angle for C18-C22-C20 is observed as 119.39° and 119.68° calculated by DFT/HF methods respectively, which shows a good agreement with the experimental data $\left(119.91^{\circ}\right)$ [16].

The bond angle of C12-N14-C15 is $121.05^{\circ} / 120.24^{\circ}$ calculated by DFT/HF methods which is closer to the experimental data $\left(121^{\circ}\right)$.The bond angles of $\mathrm{H} 27-\mathrm{C} 25-\mathrm{O} 29$ and $\mathrm{H} 28-$ C25-O29 by DFT/HF methods are $111.49^{\circ} / 111.06^{\circ}$ and $111.53^{\circ} / 111.18^{\circ}$ which is greater than the experimental finding $\left(109.5^{\circ}\right)$.The dihedral angles are calculated according to the atoms C2-C3-C12-N14 (-178.64\%-178.1 ${ }^{\circ}$) and C4-C3-C12N14 ($1.22^{\circ} / 1.83^{\circ}$) by DFT/HF methods.

Vibration analysis: The vibration analysis is used to find vibrational modes of molecular structures of the compound. The experimental and theoretical FT-IR and FT-Raman spectra of CBMA are shown in Figs. 4 and 5, respectively.

Fig. 4. Comparison of experimental and theoretical HF/B3LYP/6-311G (d,p) FT-IR spectra for CBMA

Fig. 5. Comparison of experimental and theoretical HF/B3LYP/6-311G (d,p) FT-Raman spectra for CBMA

The observed and calculated FTIR and FT-Raman wave numbers of vibrational modes of CBMA are depicted in Table2. In the present study, the scaling factors of 0.9085 and 0.9668 are followed for HF and DFT methods respectively. According to the theoretical calculations, CBMA has a planar structure. The molecule has 29 atoms and 81 normal modes of fundamental vibrations. All the 81 vibrations are distributed as 28 stretching, 27 in plane bending, 26 torsional and 4 out of plane bending vibrations. All the fundamental vibrations are found to be active in both IR and Raman regions.

C-C vibrations: The ring stretching vibrations are very important in the spectrum of benzene. Most of the ring vibrations are affected by the substitution to the aromatic ring of benzene derivatives. The six ring carbon atoms undergo skeletal vibration. The C-C stretching modes of the phenyl group are expected in the range from 1625 to $1430 \mathrm{~cm}^{-1}$. For the molecule (CBMA), C-C stretching vibration peaks are obtained at 1623,1577 , 1451,1407 and $1362 \mathrm{~cm}^{-1}$.

C-H vibrations: The aromatic organic compounds and their derivatives are very close to benzene and exhibit multiple

TABLE-2
COMPARISON OF THE EXPERIMENTAL AND CALCULATED VIBRATIONAL SPECTRA OF CBMA

Mode No.	Experimental wavenumber $\left(\mathrm{cm}^{-1}\right)$		Theoretical wavenumbers (cm^{-1})								Vibrational assignments
	FT-IR	FT- Raman	HF/6-311G(d,p)				DFT/B3LYP/6-311G(d,p)				
			Unscaled	Scaled	${ }^{\text {a }} \mathrm{I}_{\mathrm{iR}}$	${ }^{\text {b }}$ IRA	Unscaled	Scaled	${ }^{\mathrm{a}} \mathrm{I}_{\mathrm{iR}}$	${ }^{\text {b }} \mathrm{I}_{\text {RA }}$	
1	3062m	3069w	3376	3067	1.74	90.67	3206	3118	3.18	144.34	v (CH)
2			3366	3058	5.22	113.65	3203	3096	12.26	134.97	$v(\mathrm{NC)}$
3			3358	3050	1.77	60.74	3202	3095	4.41	122	$v(\mathrm{CH})$
4			3355	3048	6.98	147.47	3198	3091	8.09	140.53	$v(\mathrm{NC})$
5			3349	3042	13.06	78.91	3193	3086	0.63	52.81	$v(\mathrm{ClC})$
6	3036m		3336	3030	9.53	87.04	3183	3077	4.71	87.84	$v(\mathrm{CH})$
7			3331	3026	14.23	31.2	3175	3069	8.36	29.42	$v(\mathrm{CH})$
8	3015 m	3016w	3327	3022	11.45	56.96	3165	3059	7.99	53.73	$v(\mathrm{CH})$
9			3274	2974	63.93	191.56	3133	3028	28.77	192.75	$v(\mathrm{CH})$
10	2935m		3217	2922	49.37	40.35	3058	2953	42.6	72.17	$v(\mathrm{CH})$
11	2930m		3207	2913	32.89	33.64	3002	2902	56.17	46.52	$v(\mathrm{CH})$
12	2842m	2845w	3158	2869	65.13	109.78	3000	2900	64.06	150.54	$v(\mathrm{CH})$
13	1942m		1892	1718	282.3	2183.07	1685	1629	85.88	2801.54	$v(\mathrm{OH})$
14			1802	1637	8.55	369.28	1643	1588	115.54	111.86	$v(\mathrm{CH})$
15	1623s	1620m	1788	1624	31.12	941.69	1627	1572	3.46	5833.13	$v(\mathrm{CC})$
16			1756	1595	0.7	12.51	1606	1552	6.59	54.91	$v(C C)$
17	1577m	1591vs	1753	1592	23.68	51.33	1603	1549	4.64	1466.5	$v(\mathrm{CC})$
18		1566s	1674	1520	272.01	48.07	1537	1485	220.57	471.72	$v(\mathrm{CH})$
19	1507s		1654	1502	34.85	36.82	1519	1468	27.95	306.54	$v(\mathrm{CH})$
20			1627	1478	21.16	13.85	1506	1456	59.15	6.69	$v(\mathrm{CH})$
21			1612	1464	7.7	16.2	1491	1441	8.12	22.3	$v(\mathrm{CH})$
22	1451m		1602	1455	24.67	4.71	1477	1427	20.58	8.68	$v(\mathrm{CH})$
23			1557	1414	0.25	23.75	1454	1405	8.26	26.8	v (CC)
24	1407w	1404w	1547	1405	10.69	31.75	1435	1387	8.29	295.4	v (CC)
25	1362w		1511	1372	22.87	3.53	1396	1349	12.73	37.17	v (CC)
26			1431	1300	10.61	13.33	1335	1290	64.4	270.12	$v(C C)$
27	1295m		1420	1290	2.02	2.94	1327	1282	33.98	61.98	$v(\mathrm{OC})$
28	1256vs		1394	1266	262.41	35.83	1319	1275	7.93	6.11	$v(\mathrm{CC})$
29			1354	1230	22.97	1.61	1316	1272	42.11	5.68	$\delta(\mathrm{OHC})$
30		1192s	1314	1193	29.94	394.69	1277	1234	276.34	26.34	$\delta(\mathrm{CCC})$
31			1309	1189	51.12	4.21	1265	1223	41.06	29.76	$\delta(\mathrm{CCC})$
32	1164w	1163m	1284	1166	5.51	53.38	1215	1174	29	1158.2	$\delta(\mathrm{CCC})$
33	1160w		1279	1161	4.97	3.34	1204	1164	10.76	16.2	$\delta(\mathrm{CNC})$
34			1267	1151	16.05	14.23	1190	1150	24.63	277.79	$\delta(\mathrm{CCC})$
35			1263	1147	12.8	185.96	1183	1143	16.22	1427.75	$\delta(\mathrm{NCC})$
36			1251	1136	5.09	13.42	1170	1131	0.72	2.93	$\delta(\mathrm{ClCC})$
37	1091m	1099w	1192	1083	77.86	43.42	1128	1090	17.66	11.31	$\delta(\mathrm{HCC})$
38			1175	1067	17.46	18.3	1126	1088	5.42	66.68	$\delta(\mathrm{HCC})$
39			1170	1062	10.14	9.17	1097	1060	92.91	127.9	$\delta(\mathrm{HCC})$
40	1033s		1154	1048	118.2	11.18	1062	1026	78.01	8.76	$\delta(\mathrm{HCC})$
41			1127	1023	1.22	26.6	1027	1027	34.18	41.32	$\delta(\mathrm{HCH})$
42			1111	1009	0.31	2.11	1021	987	0.24	0.51	$\delta(\mathrm{CCC})$
43			1103	1002	27.27	6.25	1005	971	5.34	86.95	$\delta(\mathrm{HCH})$
44			1101	1000	2.13	1.11	993	960	1.23	39.13	$\delta(\mathrm{CCC})$

174 Louis et al.

45			1091	991	0.48	2.25	972	939	0.65	7.57	$\delta(\mathrm{CCC})$
46	974w		1075	976	0.36	2.32	961	929	0.34	22.35	$\delta(\mathrm{HCC})$
47			1067	969	3.37	0.65	942	910	0.96	6.22	$\delta(\mathrm{HCC})$
48		885w	978	888	63.72	3.31	896	866	26.69	26.14	$\delta(\mathrm{HCC})$
49			946	859	29.84	10.76	855	826	61.03	5.17	$\delta(\mathrm{HCC})$
50			943	856	11.15	0.4	850	821	21.31	15.79	$\delta(\mathrm{HCN})$
51			931	845	24.06	0.45	847	818	10.24	7.49	$\delta(\mathrm{CCC})$
52	837vs		928	843	1.11	10.95	832	804	10.14	4.35	$\delta(\mathrm{CCO})$
53			903	820	14.22	10.31	813	786	14.58	32.53	$\delta(\mathrm{CCC})$
54	762w	766w	836	759	12.15	30.22	778	752	5.24	55.46	$\delta(\mathrm{COH})$
55	725w		826	750	8.33	8.55	739	714	5.77	3.22	$\delta(\mathrm{CCN})$
56			791	718	2.45	1.9	724	699	2.65	1.9	τ (CCCC)
57	685w		740	672	13.65	6.89	690	667	19.94	7.97	τ (CNCC)
58	636w		703	638	0.04	5.33	654	632	0.73	4.76	τ (CCCC)
59			691	627	0.53	11.78	644	622	0.3	12.7	τ (HCCC)
60			640	581	27.72	0.25	562	543	5.87	4.17	τ (HCCO)
61	548m		586	532	15.87	1.58	552	533	24.66	2.65	τ (HCCC)
62			575	522	6.79	4.12	523	505	7.07	1.95	τ (HCCC)
63	499m		537	487	6.67	1.11	495	478	8.34	3.58	τ (HCHO)
64	453w		488	443	5.11	3.62	475	459	17.68	11.76	τ (CCCC)
65			472	428	3.07	9.18	432	417	6.2	25.17	τ (HCHO)
66			460	417	0.49	0.44	423	408	0.06	0.6	$\tau(\mathrm{CCCN})$
67			445	404	18.49	0.46	415	401	4.7	12.63	τ (CCCC)
68	399w		429	389	8.64	0.65	395	381	18.07	10.96	τ (HCCO)
69		340w	383	347	1.58	3.59	340	328	6.45	12.34	τ (HCCC)
70			344	312	5.99	2.6	326	315	2.05	5.8	τ (HCCC)
71			296	268	6.37	5.23	262	253	1.28	0.12	τ (HCCC)
72			262	238	0.2	0.97	250	241	5.62	18.26	$\tau(\mathrm{HCNC})$
73		178m	196	178	5.23	10.6	232	224	1.26	9.06	τ (CCCC)
74			179	162	0.58	0.31	192	185	10.74	52.69	τ (CCOC)
75			160	145	0.97	9.46	185	178	0.37	2.8	τ (CCCO)
76			140	127	3.59	4.21	138	133	0.41	1.99	τ (COHC)
77		104s	95	86	1.33	2.34	103	99	0.8	3.7	$\tau(\mathrm{CCNC})$
78			53	48	2.4	1.99	81	78	1.68	3.3	γ (ClCCC)
79			40	36	0.46	3.4	45	43	0.44	2.1	γ (CCCC)
80			37	33	1.03	3.85	38	36	0.78	9.9	γ (NCCC)
81			31	28	1.52	1.85	30	29	0.21	1.2	γ (COCC)

$v=$ Stretching; $\delta=$ in-plane bending; $\gamma=$ out-of-plane bending: torsion; vs: very strong; s: strong; w: weak; m: medium.
${ }^{\text {a }} \mathrm{IR}$ intensity ($\mathrm{K} \mathrm{mmol}^{-1}$); ${ }^{\text {b }}$ Raman intensity (Arb. units).
weak bands in the region $3100-3000 \mathrm{~cm}^{-1}$ due to $\mathrm{C}-\mathrm{H}$ stretching vibrations [26]. In this region, the bands are not affected much by the nature of substituent. The C-H stretching modes usually appear with strong Raman intensity and are highly polarized. The bands appear in the whole range of the spectrum [27].

In the present investigation, the FT-IR and FT-Raman spectral wave numbers are assigned to the $\mathrm{C}-\mathrm{H}$ stretching modes of the aromatic group of CBMA. The theoretically computed wavenumbers by $\mathrm{HF} / 6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ method are found to be 3067, 3050, 3030, 3026, 3022, 2974, 2922, 2913 and 2869 cm^{-1} whereas DFT/B3LYP/6-311G(d, p) method results the wave numbers at $3118,3095,3077,3069,3059,3028,2953$, 2902 and $2900 \mathrm{~cm}^{-1}$ that fall within the recorded spectral range.

The in-plane aromatic C-H bending vibrations occur in the region $1400-1000 \mathrm{~cm}^{-1}$. The $\mathrm{C}-\mathrm{H}$ in plane bending vibrations are at 1478, 1464 and $1455 \mathrm{~cm}^{-1}$ computed by HF and at 1456, 1441 and $1427 \mathrm{~cm}^{-1}$ by B3LYP method, which shows an agreement with the medium FT-IR band at $1451 \mathrm{~cm}^{1}$.

Methoxy group vibrations: If the CH_{3} group is directly attached to oxygen atom, the $\mathrm{C}-\mathrm{H}$ bending and stretching bands
would shift their positions due to electronic effects [28]. This causes the $\mathrm{O}-\mathrm{CH}_{3}$ stretching bands to be spread over a larger region than that of the $\mathrm{C}-\mathrm{CH}_{3}$ group. The medium band is observed at $1295 \mathrm{~cm}^{-1}$ in the FTIR spectrum. The mode Nos.6,11 and 14 show the $\mathrm{C}-\mathrm{H}$ bonds.
$\mathbf{C - N}$ and $\mathbf{C}=\mathbf{N}$ vibrations: The $\mathrm{C}-\mathrm{N}$ stretching vibration [29] coupled with $\delta(\mathrm{NH})$ is strongly active in the region [30] $1275 \pm 55 \mathrm{~cm}^{-1}$. The $\mathrm{C}=\mathrm{N}$ stretching skeletal bands are expected in the range 1672-1566 cm^{-1} [31]. For the molecule CBMA, the FTIR spectrum shows the $\mathrm{C}-\mathrm{N}$ band at 1160 and $\mathrm{C}=\mathrm{N}$ band at $725 \mathrm{~cm}^{-1}$.

C-Cl vibrations: Mooney [32] assigned vibrations of C-X group ($\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ and I) in the frequency range of 1129$480 \mathrm{~cm}^{-1}$. The $\mathrm{C}-\mathrm{Cl}$ stretching mode is reported at $738 \mathrm{~cm}^{-1}$ for dichloromethane and scissoring mode $\delta(\mathrm{C}-\mathrm{Cl})$ at $284 \mathrm{~cm}^{-1}$ [3335] reported $\mathrm{C}-\mathrm{Cl}$ stretching mode at $890 \mathrm{~cm}^{-1}$. For the CBMA, the C-Cl stretching frequency appears at $548 \mathrm{~cm}^{-1}$ in the FTIR spectrum. HF method shows the C-Cl vibrations at 3050, 1136, 532, 268 and $48 \mathrm{~cm}^{-1}$. DFT/B3LYP method shows those vibrations at $3095,1130,533,253$ and $78 \mathrm{~cm}^{-1}$.

NBO analysis: The natural bond orbital (NBO) analysis is a method to study intra- and intermolecular bonding and interaction among bonds. It investigates charge transfer or conjugative interaction in molecular systems [36]. The NBO analysis was done by examining all possible interactions between 'filled' (donor) Lewis-type NBOs and 'empty' (acceptor) non-Lewis NBOs and estimating their energies by second order perturbation theory. A lone pair donor \rightarrow anti-bonding acceptor orbital interaction will weaken the bond which is associated with the anti-bonding orbital. Conversely, an interaction with a bonding pair as the acceptor can strengthen the bond [37]. The second order Fock-matrix evaluates the donor-acceptor interactions in the NBO basis. However, the strengths of these delocalization interactions $\left(\mathrm{E}_{2}\right)$ are estimated by second order perturbation theory by using the following equation:

$$
\begin{equation*}
E_{2}=\Delta E_{i j}=q_{i} \frac{F(i, j)_{2}}{\varepsilon_{j}-\varepsilon_{i}} \tag{2}
\end{equation*}
$$

where q_{i} is the donor orbital occupancy; ε_{i} and ε_{j} are the diagonal elements; F_{ij} is the off diagonal NBO Fock matrix element. For the larger E_{2} value, the donation tendency from electron donors to electron acceptors increases with the extent of conjugation of the whole system. The intramolecular interactions are formed by the orbital overlap between $\sigma(\mathrm{C}-\mathrm{C})$ and $\sigma^{*}(\mathrm{C}-\mathrm{C}) ; \pi(\mathrm{C}-\mathrm{C})$ and $\pi^{*}(\mathrm{C}-\mathrm{C})$ and $\mathrm{LP}(1), \mathrm{LP}(2)$ and $\mathrm{LP}(3)$ bond orbital which results intramolecular charge transfer (ICT) making stabilization of the system.

In the CBMA molecule, the π electron delocalization is maximum around $\mathrm{C} 2-\mathrm{C} 3, \mathrm{C} 4-\mathrm{C} 5, \mathrm{C} 16-\mathrm{C} 18$ and $\mathrm{C} 20-\mathrm{C} 22$ distri-
buted to π^{*} antibonding of C1-C6, C4-C5, C20-C22 and C15C17 with a stabilization energy of $21.76,19.57,21.98,21.55$ and $21.48 \mathrm{KJ} / \mathrm{mol}$ as shown in Table-3. The electron density transfer observed from the interaction LP (3)C111 $\rightarrow \pi^{*}$ (C1C6) results in stabilization energy of $12.57 \mathrm{KJ} / \mathrm{mol}$. The charge transfer from the lone electron pair of LP (2)O29 atom to $\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$ and $\pi^{*}(\mathrm{C} 25-\mathrm{H} 27)$ antibonding orbital results in stabilization energy of $30.64 \mathrm{KJ} / \mathrm{mol}, 5.64 \mathrm{KJ} / \mathrm{mol}$. $\pi^{*}(\mathrm{C} 1-\mathrm{C} 6)$ and $\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$ of the NBO conjugated with $\pi^{*}(\mathrm{C} 2-\mathrm{C} 3)$, $\pi^{*}(\mathrm{C} 4-\mathrm{C} 5)$ and $\pi^{*}(\mathrm{C} 5 \mathrm{AC} 6)$ leads to an enormous stabilization energy of $213.88,136.12$ and $211.16 \mathrm{KJ} / \mathrm{mol}$ respectively. This strong stabilization represents a larger delocalization.

Non-linear optical properties-first order hyperpolarizability: Quantum chemical calculations explain the relationship between the electronic structure of the systems and its NLO response [38]. The computational methods help to determine molecular NLO properties in an inexpensive way to explain the molecules properties. The NLO activity explains optical modulation, optical switching, frequency shifting and optical logic for the communication, signal processing and optical interconnections [22,39].

The non-linear optical properties are analyzed by the polarization of the molecule in an external radiation field. For the weak polarization condition, dipolar interaction is demonstrated by Taylor series. The first static hyperpolarizability $\left(\beta_{0}\right)$ and its related properties such as static polarizability (α), hyperpolarizability (β) and electric dipole moment (μ) have been calculated using HF/B3LYP/6-311G(d,p) levels. The first hyperpolarizability is a third rank tensor in the presence

TABLE-3
SECOND ORDER PERTURBATION ANALYSIS OF FOCK MATRIX IN NBO BASIS FOR CBMA

Donor(i)	Ed(i)(e)	Acceptor(j)	ED(j)(e)	$\mathrm{E}(2)^{\mathrm{a}}$ ($\left.\mathrm{KJ} / \mathrm{mol}\right)$	$\mathrm{E}(\mathrm{j})-\mathrm{E}(\mathrm{i})^{\text {b }}$ (a.u)	$\mathrm{F}(\mathrm{ij})^{\text {c }}$ (a.u)
$\pi(\mathrm{C} 1-\mathrm{C} 2)$	1.969	$\pi^{*}(\mathrm{C} 6-\mathrm{Cl11)}$	0.034	5.37	0.84	0.060
$\pi(\mathrm{C} 1-\mathrm{C} 6)$	1.677	$\pi^{*}(\mathrm{C} 2-\mathrm{C} 3)$	0.374	18.84	0.30	0.068
		$\pi^{*}(\mathrm{C} 4-\mathrm{C} 5)$	0.28	17.75	0.31	0.067
$\pi(\mathrm{C} 2-\mathrm{C} 3)$	1.631	$\pi^{*}(\mathrm{C} 1-\mathrm{C} 6)$	0.388	21.76	0.27	0.068
		$\pi^{*}(\mathrm{C} 4-\mathrm{C} 5)$	0.28	19.57	0.29	0.068
		$\pi^{*}(\mathrm{C} 12-\mathrm{N} 14)$	0.154	17.63	0.29	0.068
$\pi(\mathrm{C} 4-\mathrm{C} 5)$	1.668	$\pi^{*}(\mathrm{C} 1-\mathrm{C} 6)$	0.388	21.98	0.27	0.070
		$\pi^{*}(\mathrm{C} 2-\mathrm{C} 3)$	0.374	19.02	0.29	0.067
$\pi(\mathrm{C} 12-\mathrm{N} 14)$	1.908	$\pi^{*}(\mathrm{C} 15-\mathrm{C} 17)$	0.388	10.42	0.36	0.059
$\pi(\mathrm{C} 15-\mathrm{C} 17)$	1.654	$\pi^{*}(\mathrm{C} 16-\mathrm{C} 18)$	0.301	19.6	0.29	0.068
		$\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$	0.395	18.42	0.28	0.065
$\pi(\mathrm{C} 16-\mathrm{C} 18)$	1.713	$\pi^{*}(\mathrm{C} 15-\mathrm{C} 17)$	0.388	17.72	0.29	0.065
		$\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$	0.395	21.55	0.28	0.071
$\pi(\mathrm{C} 20-\mathrm{C} 22)$	1.658	$\pi^{*}(\mathrm{C} 15-\mathrm{C} 17)$	0.388	21.48	0.29	0.072
		$\pi^{*}(\mathrm{C} 16-\mathrm{C} 18)$	0.301	16.23	0.30	0.063
LP(3)C111	1.924	$\pi^{*}(\mathrm{C} 1-\mathrm{C} 6)$	0.388	12.57	0.33	0.063
LP(1)N14	1.891	$\pi^{*}(\mathrm{C} 12-\mathrm{H} 13)$	0.041	12.62	0.73	0.087
		$\pi^{*}(\mathrm{C} 15-\mathrm{C} 17)$	0.033	7.16	0.91	0.073
LP(1)O29	1.962	$\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$	0.03	7.22	1.10	0.080
LP(2)O29	1.838	$\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$	0.395	30.64	0.34	0.097
		$\pi^{*}(\mathrm{C} 25-\mathrm{H} 27)$	0.019	5.64	0.69	0.058
		$\pi^{*}(\mathrm{C} 25-\mathrm{H} 28)$	0.019	5.78	0.69	0.058
$\pi^{*}(\mathrm{C} 1-\mathrm{C} 6)$	0.388	$\pi^{*}(\mathrm{C} 2-\mathrm{C} 3)$	0.374	213.88	0.02	0.085
		$\pi^{*}(\mathrm{C} 4-\mathrm{C} 5)$	0.28	136.12	0.02	0.080
$\pi^{*}(\mathrm{C} 20-\mathrm{C} 22)$	0.395	$\pi^{*}(\mathrm{C} 16-\mathrm{C} 18)$	0.301	211.16	0.01	0.082

E_{D} means electron density; ${ }^{a} \mathrm{E}(2)$ means energy of hyper conjugative interactions; ${ }^{\mathrm{b}}$ Energy difference between donor and acceptor i and j NBO orbitals; ${ }^{\mathrm{C}} \mathrm{F}(\mathrm{i}, \mathrm{j})$ is the Fock matrix element between i and j NBO orbitals.
of an applied electric field. The 27 components of the 3D matrix which is given in the lower tetrahedral format can be reduced to 10 components because of the Kleinman symmetry [22].

The total static dipole moment (μ), the mean polarizability $\left(\alpha_{0}\right)$, the anisotropy of the polarizability $(\Delta \alpha)$ and the mean first hyperpolarizability (β_{0}) using the x, y and z components are defined as:

$$
\begin{gather*}
\mu=\left(\mu_{x}^{2}+\mu_{y}^{2}+\mu_{z}^{2}\right)^{1 / 2} \tag{3}\\
\alpha_{0}=\left(\alpha_{x x}+\alpha_{y y}+\alpha_{z z}\right) / 3 \tag{4}
\end{gather*}
$$

$$
\begin{gather*}
\Delta \alpha=2^{-1 / 2}\left[\left(\alpha_{x x}-\alpha_{y y}\right)^{2}+\left(\alpha_{y y}-\alpha_{z z}\right)^{2}+\left(\alpha_{z z}-\alpha_{x x}\right)^{2}+\right. \\
\left.6 \alpha_{x z}^{2}+6 \alpha_{x y}^{2}+6 \alpha_{y z}^{2}\right]^{1 / 2} \tag{5}\\
\beta=\left(\beta_{x}{ }^{2}+\beta_{y}{ }^{2}+\beta_{z}{ }^{2}\right)^{1 / 2} \tag{6}
\end{gather*}
$$

Since the values are calculated in atomic units (a.u.), the reported values have been converted into electrostatic units (esu) (For $\alpha, 1$ a.u. $=0.1482 \times 10^{-24}$ esu; for $\beta, 1$ a.u. $=8.639$ $\times 10^{-33} \mathrm{esu}$) [40]. The mean polarizability (α_{0}), total polarizability $(\Delta \alpha)$, total molecular dipole moment (μ) and first order hyperpolarizability (β), of the CBMA in different media are shown in Table-4. Total dipole moment of CBMA molecule is three times greater than that of urea and first order hyperpolarizability approximately 70 times greater than that of urea (μ and β of urea are 1.3732 Debye and 0.3728×10^{-30} esu respectively [41]). This result confirms the good non-linearity of the CBMA molecule.

Electronic properties

UV-visible spectral analysis: Ultraviolet spectral analysis of CBMA has been investigated in gas, methanol, ethanol, benzene, dichloroethane and dimethyl sulfoxide by theoretical calculation. TD-DFT/B3LYP/6-311G(d,p) calculations have
been used to determine the low-level excited states of CBMA. The theoretical UV spectra of CBMA are shown in Fig. 6. Calculations regarding the excitation energies, oscillator strength (f) and wavelength (λ) have been carried out and the results were compared (Table-5) with the measured experimental wavelengths.

Fig. 6. Theoretical UV spectra of CBMA in different solvents
Based on the Frank-Condon principle, the maximum absorption peak ($\lambda_{\max }$) in a UV-visible spectrum corresponds to vertical excitation. The calculations performed for ethanol and methanol are very close to each other while comparing

TABLE-4
ELECTRIC DIPOLE MOMENT, POLARIZABILITY AND FIRST ORDER HYPERPOLARIZABILITY OF CBMA BY DFT/B3LYP/6-311G(d,p) METHOD

	Gas	Methanol	Ethanol	Benzene	Dichloroethane	Dimethyl sulfoxide
Dipole moment (μ)	3.514	4.491	4.472	3.921	4.362	4.51
Polarizability						
$\alpha_{x x}$	384.015	485.8343	484.3936	433.7619	475.861	487.2472
$\alpha_{x y}$	-1.6206	-6.4663	-6.3573	-3.4004	-5.745	-6.5749
$\alpha_{y y}$	158.416	222.1806	220.8531	183.4727	213.352	223.5006
$\alpha_{x z}$	0.2055	0.6699	0.6614	0.3881	0.6111	0.6782
$\alpha_{y z}$	2.6508	4.2248	4.1874	3.218	3.9801	4.2623
$\alpha_{z z}$	84.5107	109.1256	108.5103	93.1333	105.132	109.7429
α_{0}	208.98	272.3802	271.25	236.78	264.78	273.49
$\Delta \alpha$ (a.u)	270.245	334.8184	334.143	305.64	330.201	335.417
$\Delta \alpha\left(\mathrm{esu} \times 10^{-24}\right)$	40.05	49.61	49.55	45.29	48.93	49.71
Hyperpolarizability						
β_{xxx}	3086.55	6644.7279	6586.306	4660.148	6243.6	6702.163
$\beta_{\text {xyy }}$	-70.51	-143.8972	-142.271	-98.0427	-133.139	-145.517
β_{xzz}	-46.26	-72.7867	-72.1461	-56.0401	-68.6366	-73.43
$\beta_{\text {yyy }}$	-50.72	-86.6843	-85.9062	-63.6516	-81.4195	-87.4515
$\beta_{y z z}$	-46.33	81.9285	-81.0185	-58.653	-76.047	-82.8429
$\beta_{\text {xxy }}$	-179.03	-443.5372	-437.653	-276.9125	-404.536	-449.394
$\beta_{z z z}$	32.42	55.31029	54.734	40.478	51.5829	55.8891
$\beta_{\text {xxz }}$	-163.55	-366.509	-362.202	-242.7718	-337.998	-370.8
$\beta_{y y z}$	-40	-80.1164	-79.1391	-54.2357	-73.7446	-81.095
$\beta_{\text {xyz }}$	57.62	120.1067	118.8923	82.6721	111.909	121.3073
β (a.u)	2987.49	6455.528	6412.16	4530.987	6078.59	6524.73
$\beta\left(\mathrm{esu} \times 10^{-30}\right)$	25.8	55.77	55.39	37.57	52.5	56.36

TABLE-5			
CALCULATED WAVELENGTH (λ, nm), EXCITATION			
ENERGIES (E, eV) AND OSCILLATOR STRENGTH			
	$\mathrm{E}(\mathrm{eV})$	$\lambda(\mathrm{nm})$	(f)
Gas	3.4040	364.19	0.5066
	4.3380	285.77	0.2467
Methanol	3.3650	368.44	0.6168
	4.3490	285.08	0.2928
Ethanol	3.3602	368.97	0.6238
	4.3465	285.25	0.2968
Benzene	3.3296	372.37	0.6449
	4.3176	287.16	0.3139
Dichloroethane	3.3468	370.46	0.6394
	4.3376	285.84	0.3059
Dimethyl	3.3546	369.59	0.6360
sufloxide	4.3452	285.33	0.3031

with other solvents. The absorption maxima values of gas phase are smaller than that in the organic solvents. However, polar solvents such as methanol, ethanol etc., may stabilize or destabilize the molecular orbital of a molecule either in the ground state or in excited state. The electronic absorption spectra of CBMA showed two bands at 245 and 365 nm . These excitations correspond to $\pi-\pi^{*}$ transition, which is more polar than the ground state.

Frontier molecular orbital analysis: Many organic molecules, containing conjugated π-electrons with large first hyperpolarizabilities are analyzed by means of vibrational spectroscopy [42,43]. In most of the cases, the strongest bands in the Raman spectrum are weak in the IR spectrum and vice versa even in the absence of inversion symmetry. The intramolecular charge transfer from the donor to accepter group can induce large variations in dipole moment and the molecular polarizability. The important frontier molecular orbital are the highest
occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO). These orbitals determine the way the molecule interacts with other species. The frontier orbital gap helps to analyze the chemical reactivity and kinetic stability of the molecule. A molecule with a small frontier orbital gap is more polarizable with a high chemical reactivity and low kinetic stability. It is also termed as a soft molecule [44]. The frontier molecular orbitals show an important role in the electronic, optical properties and chemical reactions [45,46]. The conjugated molecules are explained by HOMO-LUMO separation by the intramolecular charge transfer from the efficient electron-donor groups to the electron-acceptor groups through π-conjugated path [47].

The HOMO has an ability to donate an electron whereas LUMO is an electron acceptor. The HOMO and LUMO energies calculated by B3LYP/6-311G(d,p) method are shown in Table6. This electronic absorption corresponds to the transition from the ground state to the first excited state depicted by one electron excitation from the HOMO to the LUMO. The energy of the HOMO and LUMO is directly related to the ionization potential and electron affinity respectively. The energy difference between HOMO and LUMO orbital is called as energy gap which is an important for structure stability [48] and is given in Table-6. The plots of HOMOs and LUMOs are shown in Fig. 7(a-f). The frontier energy gap of CBMA in gas, methanol, ethanol, benzene, dichloroethane and dimethyl sulfoxide are found to be $0.1419 \mathrm{eV}, 0.1424 \mathrm{eV}, 0.1423 \mathrm{eV}, 0.142 \mathrm{eV}, 0.142$ eV and 0.1423 eV respectively obtained by DFT method using $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. The HOMO is located whole of the molecules except some-C-H groups and LUMO is contributed by the whole of the molecules except methyl group.

Fig. 7. Frontier and second frontier molecular orbitals of CBMA in (a) gas, (b) methanol, (c) ethanol, (d) benzene, (e) dichloroethane and (f) dimethyl sulfoxide

TABLE-6 CALCULATED ENERGY VALUES OF CBMA MOLECULES BY THE DFT/B3LYP METHOD USING 6-311G(d,p) BASIS SET						
	Gas	Methanol	Ethanol	Benzene	DCIE	DMSO
$\mathrm{E}_{\text {номо }}$	-0.2127	-0.2163	-0.2162	-0.2138	-0.216	-0.2164
$\mathrm{E}_{\text {Lumo }}$	-0.0708	-0.0739	-0.0739	-0.0718	-0.074	-0.0741
$\mathrm{E}_{\text {номо }}-\mathrm{E}_{\text {LUмо }}$	0.1419	0.1424	0.1423	0.1420	0.142	0.1423
Еномо-1 $^{\text {¢ }}$	-0.2560	-0.2602	-0.2601	-0.2576	-0.260	-0.2603
$\mathrm{E}_{\text {Lumorl }}$	-0.0273	-0.0289	-0.0289	-0.0277	-0.029	-0.0289
$\mathrm{E}_{\text {номо-1 }}-\mathrm{E}_{\text {LUмо+1 }}$	0.2300	0.2313	0.2312	0.2299	0.231	0.2314
$\mathrm{E}_{\text {номо-2 }}$	-0.2621	-0.2663	-0.2662	-0.2634	-0.266	-0.2664
$\mathrm{E}_{\text {LUMO+2 }}$	-0.0156	-0.0192	-0.0191	-0.0167	-0.019	-0.0193
$\mathrm{E}_{\text {Hомо-2 }-2-}$ - $\mathrm{ELUMO}+2$	0.2470	0.2470	0.2470	0.2470	0.247	0.2470

Electrostatic potential, total electron density and molecular electrostatic potential: The molecular electrostatic potential surface is a visual method of mapping electrostatic potential onto the iso-electron density surface which simultaneously displays molecular electrostatic potential (electron + nuclei) distribution, dipole moments, size and shape [49]. Fig. 8 shows the electrostatic potential (ESP), the total electron density (TED) and molecular electrostatic potential (MEP) surfaces of the CBMA molecule by using B3LYP method. The colour scheme of electrostatic potential (Fig. 8a) shows the negative electrostatic potentials in nitrogen atoms (red colour) and slightly electron rich region in oxygen atom (yellow colour). Green areas cover the electrostatic potentials of the molecule which are close to zero ($\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds). The total electron density (TED) plots for CBMA show a uniform distribution (Fig. 8b) computed at 0.020 a.u. iso-density surface. The colour code of these maps is represented in the range between -4.037 e-4 (deepest red) and +4.037 e-4 (deepest blue) in the compound.

The molecular electrostatic potential $\mathrm{V}(\mathrm{r})$ is related to the electronic density, which helps to determine sites for electrophilic attack and nucleophilic reactions. Molecular electrostatic potential values are calculated using the equation [50]:

$$
\begin{equation*}
\mathrm{V}(\mathrm{r})=\Sigma \mathrm{Z}_{\mathrm{A}} /\left|\mathrm{R}_{\mathrm{A}}-\mathrm{r}\right|-\int \rho\left(\mathrm{r}^{1}\right) /\left|\mathrm{r}^{1}-\mathrm{r}\right| \mathrm{d}^{3} \mathrm{r}^{1} \tag{7}
\end{equation*}
$$

where Z_{A} is the charge of nucleus A located at $R_{A}, \rho\left(r^{1}\right)$ is the electronic density function of the molecule and r^{1} is the dummy integration variable. The colour code of these maps is in the range between -3.295 e-2 (deepest red) and +3.295 e-2 (deepest blue) in the compound (Fig. 8c). The maximum positive region is localized around the hydrogen atoms, indicating nucleophilic attack (blue colour) and the maximum negative region is localized on nitrogen atoms indicating electrophilic attack (red colour).

Global reactivity descriptors: The energy gap between HOMO and LUMO is used to calculate global chemical reactivity descriptors of molecules such as hardness (η), chemical
potential (μ), softness (S), electro negativity (χ) and electrophilicity index (ω) [51,52]. Those descriptors are calculated on the basis of $\mathrm{E}_{\text {номо }}$ and $\mathrm{E}_{\text {LUмо }}$ using the below equations.

Using Koopman's theorem [53]:
The hardness of the molecule is

$$
\begin{equation*}
\eta=(\mathrm{I}-\mathrm{A}) / 2 \tag{8}
\end{equation*}
$$

The chemical potential of the molecule is

$$
\begin{equation*}
\mu=-(\mathrm{I}+\mathrm{A}) / 2 \tag{9}
\end{equation*}
$$

The softness of the molecule is

$$
\begin{equation*}
S=1 / 2 \eta \tag{10}
\end{equation*}
$$

The electronegativity of the molecule is

$$
\begin{equation*}
\chi=(\mathrm{I}+\mathrm{A}) / 2 \tag{11}
\end{equation*}
$$

The electrophilicity index of the molecule is

$$
\begin{equation*}
\omega=\mu^{2 / 2 \eta} \tag{12}
\end{equation*}
$$

where I is the ionization potential and A is the electron affinity of the molecule. I and A can be expressed through HOMO and LUMO orbital energies as $\mathrm{I}=-\mathrm{E}_{\text {номо }}$ and $\mathrm{A}=-\mathrm{E}_{\text {LUмо }}$. The ionization potential, electron affinity, hardness, softness, chemical potential, electro negativity and electrophilicity index of the title molecule calculated by DFT/B3LYP level of calculation in gas/methanol/ethanol/benzene/dichloroethane/ dimethyl sulfoxide environments are shown in Table-7. By considering the chemical hardness, large HOMO-LUMO gap represents a hard molecule and small HOMO-LUMO gap represents a soft molecule. The value of energy gap between the HOMO and LUMO in different environments is small which concludes that CBMA is soft molecule, which is evidenced from Table-7. The chemical softness is found to be 7.042 (DFTGas), 7.022 (methanol), 7.032 (ethanol), 7.042 (benzene), 7.032 (dichloroethane) and 7.032 (dimethyl sulfoxide), which is greater than that of chemical hardness.

Mulliken charge analysis: Atomic charge plays a significant role in the application of quantum mechanical calculations to

Fig. 8. (a) Electrostatic potential (ESP), (b) Electron density (ED) and (c) Molecular electrostatic potential map (MEP) of CBMA

TABLE-7

GLOBAL CHEMICAL REACTIVITY DESCRIPTORS OF CBMA IN DIFFERENT MEDIA

	Gas	Methanol	Ethanol	Benzene	DCIE	DMSO
Ionization potential (I)	0.2127	0.2163	0.2162	0.2138	0.2157	0.2164
Electron affinity (A)	0.0708	0.0739	0.0739	0.0718	0.0735	0.0741
Electro negativity (χ)	0.1417	0.1451	0.1451	0.1428	0.1446	0.1452
Chemical potential (μ)	-0.1417	-0.1417	-0.1451	-0.1428	-0.1446	-0.1452
Chemical hardness (η)	0.071	0.0712	0.0711	0.071	0.0711	0.0711
Softness (S)	7.042	7.022	7.032	7.042	7.032	7.032
Electrophilicity index (ω)	0.1414	0.141	0.1481	0.1436	0.147	0.1482

molecular systems. Mulliken atomic charges are calculated by analyzing the electron population of each atom as defined by the basis function [54]. In Fig. 9, the Mulliken atomic charges of CBMA calculated by DFT/B3LYP method using $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set are shown. The results are shown in Table-8. The magnitudes of the carbon atomic charges are reported to be either positive or negative, which are changing from 0.175 to -0.238 . All the hydrogen atoms have a positive charge, whereas oxygen, nitrogen and chlorine have negative charges. The C22 has the maximum positive charge than other atoms since it is an acceptor atom and the atom O 29 has a maximum negative charge since it is a donor.

Thermodynamic properties: On the basis of vibration analysis, the statistical thermodynamic functions such as heat capacity (C), enthalpy changes (H) and entropy changes (S) for CBMA molecule were obtained from the theoretical harmonic frequencies [55]. Table-9 showed that these thermodynamic parameter values are increasing with temperature ranging from 100 to 700 K . The correlation equations between heat capacity,

Fig. 9. Histogram of calculated Mulliken charges for CBMA
enthalpy and entropy changes with temperatures were fitted by quadratic formulae and the corresponding fitting factors $\left(\mathrm{R}^{2}\right)$ for these thermodynamic properties are $0.9999,0.9998$ and 1.0000 respectively. The corresponding fitting equations are given below and the correlation graphs of those are shown in Fig. 10(a-c).

$$
\begin{array}{ll}
\mathrm{C}=2.708+0.217 \mathrm{~T}-5 \times 10^{-9} \mathrm{~T}^{2} & \left(\mathrm{R}^{2}=0.9999\right) \\
\mathrm{H}=0.016 \mathrm{~T}+5 \times 10^{-6} \mathrm{~T}^{2} & \left(\mathrm{R}^{2}=0.9998\right) \tag{14}
\end{array}
$$

TABLE-8
MULLIKEN ATOMIC CHARGES OF CBMA CALCULATED BY DFT/B3LYP/6-311G(d,p) FOR DIFFERENT SOLVENTS

Atoms	Gas	Methanol	Ethanol	Benzene	DCIE	DMSO
1C	0.021	0.015	0.015	0.018	0.015	0.015
2 C	-0.065	-0.067	-0.068	-0.067	-0.068	-0.067
3 C	-0.147	-0.156	-0.157	-0.151	-0.155	-0.157
4 C	-0.018	-0.034	-0.033	-0.024	-0.032	-0.034
5 C	0.021	0.015	0.014	0.018	0.015	-14
6 C	-0.231	-0.238	-0.237	-0.234	-0.237	-0.238
7H	0.119	0.136	0.135	0.126	0.134	0.136
8H	0.095	0.119	0.119	0.105	0.117	0.12
9H	0.109	0.109	0.109	0.11	0.109	0.109
10 H	0.122	0.136	0.136	0.129	0.135	0.137
11 Cl	-0.066	-0.079	-0.079	-0.073	-0.078	-0.079
12C	0.139	0.143	0.142	0.14	0.142	0.143
13 H	0.073	0.098	0.097	0.082	0.094	0.098
14N	-0.324	-0.343	-0.342	-0.331	-0.341	-0.343
15C	0.049	0.04	0.041	0.045	0.041	0.04
16C	-0.052	-0.073	-0.073	-0.061	-0.071	-0.074
17C	-0.068	-0.081	-0.081	-0.074	-0.079	-0.081
18C	-0.092	-0.111	-0.111	-0.1	-0.011	-0.011
19H	0.098	0.105	0.105	0.101	0.104	0.105
20C	-0.0139	-0.151	-0.15	-0.145	-0.149	-0.15
21 H	0.099	0.121	0.12	0.107	0.118	0.121
22C	0.175	0.172	0.173	0.174	0.173	0.172
23H	0.104	0.113	0.112	0.108	0.112	0.113
24H	0.104	0.129	0.128	0.114	0.126	0.129
25C	-0.132	-0.14	-0.14	-0.136	-0.139	-0.14
26H	0.13	0.137	0.137	0.134	0.136	0.137
27H	0.11	0.123	0.122	0.116	0.121	0.123
28H	0.111	0.123	0.123	0.116	0.121	0.123
290	-0.346	-0.36	-0.36	-0.352	-0.358	-0.36

TABLE-9
THERMODYNAMIC PROPERTIES OF CBMA AT DIFFERENT TEMPERATURES USING B3LYP/6-11G(d, p)

$\mathrm{T}(\mathrm{K})$	$\mathrm{C}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	$\mathrm{S}(\mathrm{cal} / \mathrm{mol} \mathrm{K})$	$\Delta \mathrm{H}(\mathrm{kcal} / \mathrm{mol})$
100	24.993	83.338	1.667
200	41.456	105.65	4.979
298.15	58.67	125.39	9.89
300	58.99	125.75	9.998
400	75.73	145.07	16.75
500	89.97	163.55	25.06
600	101.53	181.01	34.65
700	110.86	197.39	45.29
800	118.48	212.71	56.77
900	124.8	227.04	68.95
1000	130.09	240.47	81.69

Fig. 10. Correlation graphs of (a) entropy vs. temperature, (b) heat capacity $v s$. temperature and (c) enthalpy vs. temperature for CBMA

$$
\begin{equation*}
\mathrm{S}=61.11+0.230 \mathrm{~T}-5 \times 10^{-5} \mathrm{~T}^{2} \quad\left(\mathrm{R}^{2}=1.0000\right) \tag{15}
\end{equation*}
$$

These data provided helpful information for the further study on CBMA molecule. All thermodynamic calculations have been done in gas phase and they could not be used in solutions.

Conclusion

Single crystals of N-(4-chlorobenzylidene)-4-methoxyaniline (CBMA) were grown by solution growth technique. The molecular geometry and wave numbers were calculated
using HF and DFT/B3LYP with $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis set. The FT-IR and FT-Raman spectra of CBMA were studied. The UV spectra of CBMA were studied in different solvents such as methanol, ethanol, benzene, dichloroethane and dimethyl sulfoxide. The value of the energy separation between the HOMO and LUMO was found to be very small and this energy gap gave significant information about the title compound. So, it is concluded that CBMA molecule was found to be soft. From the NBO analysis, the $\pi^{*} \rightarrow \pi^{*}$ interaction revealed the strongest stabilization to the system. The calculated first order hyperpolarizability was found to be much greater than urea, which proved that the CBMA is a good non-linear optical material. The MEP map showed the maximum positive region localized around the hydrogen atoms and the maximum negative region localized on nitrogen atom. The chemical hardness, chemical softness and electrophilicity index were calculated. The thermodynamic properties like heat capacity, enthalpy and entropy were calculated in the temperature range from 100 to 1000 K .

ACKNOWLEDGEMENTS

One of the authors (A.S.H) is grateful to Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India for sanctioning the financial assistance for the project with F.No. SR/FTP/PS049/2013.

REFERENCES

1. F.F. Jian, R.R. Zhuang, K.F. Wang, P.S. Zhao and H. Xiao, Acta Cryst., E62, o3198 (2006);
https://doi.org/10.1107/S1600536806025074.
2. M.T.H. Tarafder, M.A. Ali, D.J. Wee, K. Azahari, S. Silong and K. Crouse, Transition Met. Chem., 25, 456 (2000);
https://doi.org/10.1023/A:1007062409973.
3. P. Deschamps, P.P. Kulkarni and B. Sarkar, Inorg. Chem., 42, 7366 (2003); https://doi.org/10.1021/ic034760x.
4. Z. Rozwadowski, E. Majewski, T. Dziembowska and P.E. Hansen, J. Chem. Soc. Perkin Trans. II, 2809 (1999); https://doi.org/10.1039/a903200b.
5. S. Kumar, D.G. Ladha, P.C. Jha and N.K. Shah, Int. J. Corros., Article ID 819643 (2013);
https://doi.org/10.1155/2013/819643.
6. D.S. Chemla and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987.
7. P.N. Prasad and D.J. Williams, Introduction to Nonlinear Optical Effects in Organic Molecules and Polymers, Wiley, New York (1991).
8. P. Srinivasan, T. Kanagasekaran and R. Gopalakrishnan, Cryst. Growth Des., 8, 2340 (2008);
https://doi.org/10.1021/cg701143n.
9. G. Zhang, M. Liu, D. Xu, D. Yuan, W. Sheng and J. Yao, J. Mater. Sci. Lett., 19, 1255 (2000); https://doi.org/10.1023/A:1006733831655.
10. R.W. Munn and C.N. Ironiside, Principles and Applications of NonLinear Optical Materials, Chapman and Hall, London (1993).
11. K. Naseema, V. Rao, K.V. Sujith and B. Kalluraya, Curr. Appl. Phys., 10, 1236 (2010); https://doi.org/10.1016/j.cap.2010.02.050.
12. S. Leela, K. Ramamurthi and G. Bhagavannarayana, Spectrochim. Acta A, 74, 78 (2009); https://doi.org/10.1016/j. saa.2009.05.028.
13. S. Leela, T.D. Rani, A. Subashini, S. Brindha, R.R. Babu and K. Ramamurthi, Arab. J.Chem., 10(Suppl.2), S3974 (2017); https://doi.org/10.1016/j.arabjc.2014.06.008.
14. K. Srinivasan, K. Sankaranarayanan, S. Thangavelu and P. Ramasamy, J. Cryst. Growth, 212, 246 (2000);
https://doi.org/10.1016/S0022-0248(00)00300-6.
15. A. Subashini, G. Bhagavannarayana and K. Ramamurthi, Spectrochim. Acta A, 82, 91 (2011); https://doi.org/10.1016/j. saa.2011.07.004.
16. X.Y. Ren, Y.F. Ding and F.F. Jiana, Acta Cryst., E64, o1793 (2008); https://doi.org/10.1107/S1600536808026111.
17. P. Hohenberg and W. Kohn, Phys. Rev., 136(3B), B864 (1964); https://doi.org/10.1103/PhysRev.136.B864.
18. A. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
19. C. Lee, W. Yang and R.G. Parr, Phys. Rev., B37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.1, Gaussian Inc., Wallingford CT (2009).
21. E.D. Glendening, C.R. Landis and F. Weinhold, Comput. Mol. Sci., 2, 1 (2012);
https://doi.org/10.1002/wcms.51.
22. D.A. Kleinman, Phys. Rev., 126, 1977 (1962);
https://doi.org/10.1103/PhysRev.126.1977.
23. S. Shen, G.A. Guirgis and J.R. Durig, Struct. Chem., 12, 33 (2001); https://doi.org/10.1023/A:1009258017813.
24. D. Michalska and R. Wysokinski, Chem. Phys. Lett., 403, 211 (2005); https://doi.org/10.1016/j.cplett.2004.12.096.
25. L.E. Sutton, Tables of Interatomic Distances, Chemical Society, London (1958).
26. S. Muthu, G. Ramachandran and J. Uma maheswari, Spectrochim. Acta A, 93, 214 (2012);
https://doi.org/10.1016/j. saa.2012.02.107.
27. G. Varsanyi, Vibrational Spectra of Benzene Derivatives, Academic Press, NewYork (1969).
28. B.C. Smith, Infrared Spectral Interpretation, A Systematic Approach, CRC Press, Washington DC (1999).
29. N.P.G. Roeges, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures, Wiley, New York (1994).
30. A.S. El-Shahawy, S.M. Ahmed and N.K. Sayed, Spectrochim. Acta A, 66, 143 (2007); https://doi.org/10.1016/j. saa.2006.02.034.
31. R.M. Silverstein, G.C. Bassler and T.C. Morril, Spectrometric Identification of Organic Compounds, John Wiley \& Sons Inc., Singapore, edn 5 (1991).
32. E.F. Mooney, Spectrochim. Acta A, 19, 877 (1963); https://doi.org/10.1016/0371-1951(63)80175-7.
33. N.B. Colthup, L.H. Daly and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, Boston, edn 3 (1990).
34. P. Pazdera, H. Divisová, H. Havlisová and P. Borek, Molecules, 5, 189 (2000); https://doi.org/10.3390/50200189.
35. H. Divisová, H. Havlisová, P. Borek and P. Pazdera, Molecules, 5, 1166 (2000);
https://doi.org/10.3390/51001166.
36. M. Snehalatha, C. Ravikumar, I.H. Joe, N. Sekar and V.S. Jayakumar, Spectrochim. Acta A, 72, 654 (2009); https://doi.org/10.1016/j.saa.2008.11.017.
37. K. Govindarasu, E. Kavitha and N. Sundaraganesan, Spectrochim. Acta A, 133, 417 (2014); https://doi.org/10.1016/j.saa.2014.06.040.
38. C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot and A. Collet, J. Am. Chem. Soc., 116, 2094 (1994);
https://doi.org/10.1021/ja00084a055.
39. V.M. Geskin, C. Lambert and J. Bredas, J. Am. Chem. Soc., 125, 15651 (2003); https://doi.org/10.1021/ja035862p.
40. M. Karabacak, Z. Cinar and M. Cinar, Spectrochim. Acta A, 85, 241 (2012); https://doi.org/10.1016/j. saa.2011.10.001.
41. K. Govindarasu and E. Kavitha, Spectrochim. Acta A, 122, 130 (2014); https://doi.org/10.1016/j.saa.2013.10.122.
42. T. Vijayakumar, I.H. Joe, C.P. Reghunadhan Nair and V.S. Jayakumar, Chem. Phys., 343, 83 (2008); https://doi.org/10.1016/j.chemphys.2007.10.033.
43. M.A. Palafox, Int. J. Quantum Chem., 77, 661 (2000); https://doi.org/10.1002/(SICI) $1097-461 \mathrm{X}(2000) 77: 3<661::$ AID-QUA7>3.0.CO;2-J.
44. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, John Wiley \& Sons, New York (1976).
45. T. Karakurt, M. Dincer, A. Cetin and M. Sekerci, Spectrochim. Acta A, 77, 189 (2010); https://doi.org/10.1016/j.saa.2010.05.006.
46. C.H. Choi and M. Kertesz, J. Phys. Chem. A, 101, 3823 (1997); https://doi.org/10.1021/jp970620v.
47. D.F.V. Lewis, C. Ioannides and D. Parke, Xenobiotica, 24, 401 (1994); https://doi.org/10.3109/00498259409043243.
48. V. Balachandran and V. Karunakaran, Spectrochim. Acta A, 106, 284 (2013); https://doi.org/10.1016/j.saa.2012.12.070.
49. P. Politzer and J.S. Murray, Theor. Chem. Acc., 108, 134 (2002); https://doi.org/10.1007/s00214-002-0363-9.
50. R. Parr, L. Szentpaly and S. Liu, Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x.
51. P.K. Chattaraj, B. Maiti and U. Sarkar, J. Phys. Chem. A, 107, 4973 (2003); https://doi.org/10.1021/jp034707u.
52. K. Govindarasu and E. Kavitha, J. Mol. Struct., 1088, 70 (2015); https://doi.org/10.1016/j.molstruc.2015.02.008.
53. T.A. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2.
54. D.A. Dhas, I.H. Joe, S.D.D. Roy and T.H. Freeda, Spectrochim. Acta A, 77, 36 (2010); https://doi.org/10.1016/j.saa.2010.04.020.
55. J.B. Ott and J. Boerio-Goates, Chemical Thermodynamics: Advanced Applications, Calculations from Statistical Thermodynamics, Academic Press (2000).

[^0]: ${ }^{\boxtimes}$ To whom correspondence to be addressed:

