Main Article Content

Abstract

A quantitative structure-property relationship (QSPR) model was developed for prediction of polarizability of phenol derivatives. In this study we have attempted to develop a multiple linear regression (MLR) model with high accuracy and precision. For this first we prepared several models and then validated by statistical parameters like Q factor, LSE, etc. and proposed a model which have better prediction power of prediction of polarizability.

Keywords

Polarizability QSAR QSPR Q factor Predictive error Predictive square error Uncertainty of prediction

Article Details

How to Cite
Dixit, S., & K. Sikarwar, A. (2017). Studies of Polarizability of Phenol and its Derivatives Using Computational Methods. Asian Journal of Organic & Medicinal Chemistry, 2(4), 134–137. https://doi.org/10.14233/ajomc.2017.AJOMC-P76

References

  1. L. Zhou, F.X. Lee, W. Wilcox and J. Christensen, Magnetic Polari-zability of Hadrons from Lattice QCD, European Organization for Nuclear Research (CERN), pp. 1-4, 25 May (2010).
  2. L. Pogliani, Amino Acids, 6, 141 (1994); https://doi.org/10.1007/BF00805842.
  3. J.H. van Drie, Curr. Pharm. Des., 9, 1649 (2003); https://doi.org/10.2174/1381612033454568.
  4. J.H. van Drie, eds.: P. Bultinck, H. de Winter, W. Langenaeker and J.P. Tollenaere, Computational Medicinal Chemistry for Drug Discovery, Marcel Dekker (2004).
  5. H. Meyer, Arch. Exp. Pathol. Pharmakol, 42, 109 (1899); https://doi.org/10.1007/BF01834479.
  6. A. Golbraikh and A. Tropsha, J. Mol. Graph. Model., 20, 269 (2002); https://doi.org/10.1016/S1093-3263(01)00123-1.
  7. A. Tropsha, P. Gramatica and V.J. Gombar, QSAR Comb. Sci., 22, 69 (2003); https://doi.org/10.1002/qsar.200390007.
  8. P. Gramatica, QSAR Comb. Sci., 26, 694 (2007); https://doi.org/10.1002/qsar.200610151.