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I N T R O D U C T I O N

Computational chemistry is applications of computer and
computer enable calculations in chemistry for various pur-
poses. One most important scope of computational chemistry
is QSAR and QSPR followed by drug designing. Quantitative
structure activity relationship (QSAR) provides a way to corre-
late the effect of structure over activity in terms of mathematical
descriptors viz. topological indices. In this paper, we have
developed models for polarizability using QSPR.

Polarizability is the ability for a molecule to be polarized.
It is a property of matter. Polarizabilities determine the dyna-
mical response of a bound system to external fields and provide
insight into a molecule’s internal structure [1]. Polarizability
allows us to better understand the interactions between non-
polar atoms and molecules and other electrically charged
species, such as ions or polar molecules with dipole moments.
Neutral nonpolar species have spherically symmetric arrange-
ments of electrons in their electron clouds. While in the presence
of an electric field, their electron clouds can be distorted. The
ease of this distortion is defined as the polarizability of the
atom or molecule.

E X P E R I M E N T A L

In case of modeling polarizability to build linear relation-
ship and test model, the 49 compound data sets was used as
training to build models. With the selected eight different
descriptors, we will build linear models using the training data
sets and following equations were obtained.

To developing the first model for polarizability of phenol
derivatives in we used eight descriptors Mor29p, Mor20e,
Mor04m, Mor23m, FDI, RDF045m, MATS5p, R3e. And To

A quantitative structure-property relationship (QSPR) model was
developed for prediction of polarizability of phenol derivatives. In
this study we have attempted to develop a multiple linear regression
(MLR) model with high accuracy and precision. For this first we
prepared several models and then validated by statistical parameters
like Q factor, LSE, etc. and proposed a model which have better
prediction power of prediction of polarizability.
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develop the second model eight descriptors Mor04m, Mor23m,
FDI, RDF045m, MATS5p, R3e, eHOMO, eLUMO were used.
These models expressed by eqns. 1 and 2, respectively.

Predicted polarizability = (2.10935 × Mor29p) + 5.105064 ×
Mor20e) + (1.906611 × Mor04m) + (-6.4015 × Mor23m) +
(1.973671 × FDI) + (0.771308 × RDF045m) + (-0.16242 ×
MATS5p) + (5.407675 × R3e)       (1)

Predicted polarizability = (1.561645 × Mor04m) + (-14.2767
× Mor23m) + (5.912913 × FDI) + (0.648036 × RDF045m) +
(-0.07047 × MATS5p) + (6.622492 × R3e) + (0.407784 ×
eHOMO) + (0.546949 × eLUMO)       (2)

By regression statistics we get correlation coefficient is
0.9958, r2 is 0.9916, adjusted R square is 0.9657 and the
standard error is 1.5435 for model-I, which described by eqn.
1. And we get correlation coefficient is 0.9931, r2 is 0.9863,
adjusted R square is 0.9596 and standard error is 1.9636 for
model-II which described by eqn. 2.

R E S U L T S A N D   D I S C U S S I O N

In order to confirm most powerful predictable model for
polarizability we have applied some statistical parameter. It is
worthy to mention that a model (regression equation) with
excellent statistics may not necessary have excellent predictive
power. Thus the next step of regression analysis is to examine
predictive power of the proposed model this can be easily done
by calculating poglianis quality factor Q. the quality factor
[2] Q is define as the ratio of correlation coefficient (r) to the
standard error of estimation (sd). Thus the higher the value
of r and the lower the standard error of the estimation (sd), are
the higher will be the Q values and the better will be the pro-
posed QSPR models. Polarizability model-I (eqn. 1) has better
prediction power according to value of Q.

In fact, the first aim of any modeler should be validation
for the predictive application of the QSAR model, for both
the mechanistic approach and the statistical one. The famous
“Kubinyi Paradox” [3,4] emphasized also by Tropsha et al.
[7] in their famous papers: ‘Beware of Q’ [5,6] and ‘The Impor-
tance of being Earnest’ [7] is that: The best fit models are not
the best ones for prediction! In fact, a QSAR model must, first
of all, be a real model, robust and predictive, to be considered
a reliable model [8]; only a stable and predictive model can be
usefully interpreted for its mechanistic meaning, even so this
is not always easy or feasible.

 These statistical parameters are support Model-I for
polarizability due to low value of LSE and PE is much greater
than R for model-I (eqn. 1); is the better model compares to
other. The cross-validated PRESS and SSY as recorded in
Table-1 indicates model-I (eqn. 1) for polarizability is a better
model and will give excellent result. According to SPRESS
and PSE values model-I (eqn. 1) is a better model and will
also give excellent result.

It is worthy to mention that the QSAR models viz. excellent
statistics may not have excellent predictive power. There are
necessary to investigate predictive power of all the models
discussed above. This can be done by cross validation method.
The key statistical measures of a QSAR equations predictive
ability are the followings.

TABLE-1 
CROSS VALIDATION PARAMETERS FOR  

MODELING OF POLARIZABILITY 

Statistical parameters Model-I Model-II 
R 0.996 0.993 
R2 0.992 0.986 
SE or Sd 1.544 1.964 
N 49 49 
no of Descriptors  8 8 
PRESS 97.678 158.09 
SSY 433.156 369.579 
R2cv 3.435 1.338 
SPRESS 1.563 1.988 
PSE 1.412 1.796 
R2A 0.966 0.96 
LSE 97.678 158.09 
PE 0.572 0.573 
Q = r/sd 0.645 0.506 
PRESS/SSY 0.226 0.428 

 

1. Predictive sum of squares (PRESS)
2. Sum of squares of the response values (SSY)
3. Overall predicted ability (R2cv or Q2)
4. Uncertainty of prediction (SPRESS)
5. Predictive square error (PSE)

If PRESS is smaller than the sum of squares of the response
value (SSY), the model indicates better than chance and can
be considered “statistically significant”. The ratio PRESS/SSY
can be used also to calculate approximate confidence intervals
of prediction of new observations (compounds). To be reason-
able QSAR model PRESS/SSY should be smaller than 0.4
and the value of this ratio smaller than 0.1 indicates an excellent
model. The cross-validated PRESS and SSY as recorded in
Table-1 indicates model-I (eqn. 1) for polarizability is a better
model compare to model-II (eqn. 2) and will give excellent
result.

If the PRESS value is transformed in a dimensionless term
by relatively to the initial sum of squares one obtain Q2 i.e.
complement to the fraction of unexplained variance over the
total variable. This quantity is also called predictive ability or
cross validation correlation coefficient. In such case it is expre-
ssed by r2cv or R2cv. It is observed that r2cv < R2. This is found
to be the case of polarizability model-I (eqn. 1) in present study
also.

Generally PRESS and Q2 (r2cv or R2cv) have good proper-
ties, which render than approximate for statistical testing with
critical distribution. However, for practical purpose end users
the use of square root of PRESS/n seems to be more directly
related to the uncertainty of prediction. This ratio is named as
Predictive square error and symbolized as PSE. The parameter
PSE is particularly used when SPRESS coincides with SE.
Obviously like SE and SPRESS the lower value of PSE indi-
cates least uncertainty in prediction. The parameter PSE is
important because it has the same unity as that of the activity.
Polarizability model-I (eqn. 1) has better prediction power
according to value of PSE.

The magnitude of SPRESS indicates uncertainty in
prediction. Like the standard error of estimation (SE) the model
will be smallest value of SPRESS is considered to have better
predictive power. However in our case SPRESS is coincides
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with SE and is therefore, not useful to explain the predictive
power of models. Polarizability model-I (eqn. 1) have better
prediction power according to value of SPRESS.

The probable error of the coefficient of correlation (PE)
is an interesting parameter used in QSAR in deciding whether
or not the proposed correlation is good or not. This parameter
as stated in last chapter V is calculated using the following
expression:











−=

n

r
13/2PE
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where r is the correlation coefficient and n is number of obser-
vation i.e. the number of compound used. It is argued that if
(1) r < PE, than correlation is not significant (2) r > PE, than
several times greater or at least three times greater than PE,
the correlation is indicated and (3) r > 6PE, than correlation is
definitely good. Polarizability model-I (eqn. 1) a better prediction
power according to value of PE.

This parameter LSE is calculated by summing the square
of the residue thus we have:

LSE = Σ(Residue)2 = Σ(Xobs-Xcal)2

where Xobs and Xcal are the observed n calculated value (pro-
perty or activity) respectively. We have also calculated LSE
values for proposed models and are recorded in Table-1 which
is in favour of the proposed model-I. If LSE value is low for
property or activity compare to other models than model is
better prediction power. i.e. Model has low LSE value has
excellent prediction power

Conclusion

Cross validation parameters for modeling of polarizability
support model-I. Observed value of polarizability was plotted
against and predicted values (using eqn. 1 shown in Fig. 1).
Observed and predicted value of polarizability using eqn. 1
shown in Table-2. Fig. 1 clearly indicates that there is a signifi-
cant co-relation between observed and predicted values of polari-
zability. Only BiSPHA [bisphenol-A (4,4'-propane-2,2-diyldi-
phenol)], 3DMAPH [3-(dimethylamino)phenol] shows deviation.
Other molecule shows excellent co-relation for Polarizability.
(Correlation coefficient is 0.9931, r2 is 0.9863).

TABLE-2 
OBSERVED AND PREDICTED VALUE OF 

POLARIZABILITY USING EQN. 1 

Polarizability  
± 0.5 10-24 cm3 S. 

No. 
Phenol 

derivative 
Observed Predicted 

Residuals Standard 
residuals 

1 4-OCH3 13.8 11.857 1.9428 1.0816 
2 4-OC2H5 15.63 13.902 1.7277 0.9618 
3 4-OC3H7 17.47 16.435 1.0345 0.576 
4 4-OC4H9 19.31 19.914 -0.604 -0.336 
5 4-OC6H13 22.98 21.514 1.4656 0.8159 
6 H 11.15 12.849 -1.699 -0.946 
7 4-NO2 13.74 13.59 0.1501 0.0835 
8 4-Cl 13.09 14.885 -1.795 -1 
9 4-I 16.27 14.664 1.6057 0.8939 

10 4-CHO 13.83 11.963 1.8672 1.0396 
11 4-F 11.15 12.713 -1.563 -0.87 
12 4-NH2 12.83 13.199 -0.369 -0.205 
13 4-OH 11.89 12.818 -0.928 -0.517 

 

14 4-CH3 13.06 13.349 -0.289 -0.161 
15 4-C2H5 14.93 16.119 -1.189 -0.662 
16 4-NHCOCH3 16.81 15.741 1.0689 0.5951 
17 4-CN 13.02 11.161 1.8594 1.0352 
18 4-OC6H5 21.63 19.348 2.282 1.2704 
19 Bisphenol-A 27.02 22.726 4.2944 2.3909 
20 4-Br 14.2 14.722 -0.522 -0.291 
21 4-C (CH3)3 18.44 18.82 -0.38 -0.212 
22 3-NO2 13.74 15.049 -1.309 -0.729 
23 3-NHCOCH3 16.81 15.908 0.9016 0.502 
24 3-Cl 13.09 15.438 -2.348 -1.307 
25 3-C(CH3)3 18.44 17.447 0.9926 0.5526 
26 3-CH3 13.06 12.736 0.3241 0.1804 
27 3-OCH3 13.8 12.754 1.0457 0.5821 
28 3-N (CH3)2 16.82 11.474 5.3459 2.9762 
29 3-C2H5 14.93 15.492 -0.562 -0.313 
30 3-Br 14.2 12.922 1.2783 0.7117 
31 3-CN 13.02 10.599 2.4205 1.3476 
32 3-F 11.15 13.359 -2.209 -1.23 
33 3-OH 11.89 13.526 -1.636 -0.911 
34 3-NH2 12.83 13.397 -0.567 -0.315 
35 2-CH3 13.06 12.885 0.1745 0.0972 
36 2-Cl 13.09 14.448 -1.358 -0.756 
37 2-F 11.15 13.83 -2.68 -1.492 
38 2-OCH3 13.8 16.462 -2.662 -1.482 
39 2-C2H5 14.93 17.555 -2.625 -1.462 
40 2-OH 11.89 13.79 -1.9 -1.058 
41 2-OH, 4CH3 13.81 14.055 -0.245 -0.137 
42 2-NH2 12.83 13.65 -0.82 -0.456 
43 2-CN 13.02 10.642 2.3783 1.3241 
44 2-NO2 13.74 15.651 -1.911 -1.064 
45 2-Br 14.2 16.93 -2.73 -1.52 
46 2-C(CH3)3 18.44 18.622 -0.182 -0.101 
47 4-C3H7 16.77 17.5 -0.73 -0.407 
48 4-C4H9 18.61 18.347 0.2627 0.1463 
49 4-C5H11 20.44 18.801 1.6393 0.9127 
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Fig. 1. Correlation of observed and predicted value of polarizability using
eqn. 1
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