Main Article Content

Abstract

A reaction of 3-methyl-5-(3'-phenyl prop-2'-enoyl)-1,2-benzisoxazole (1a) with hydroxylamine hydrochloride to furnish 3-methyl-5-(3'- phenyl isoxazol-5'-yl)-1,2-benzisoxazole (2a). Oxidation of the product 2a with KMnO4 and sodium carbonate produces 5-(3'-phenyl isoxazol- 5'-yl)-1,2-benzisoxazole-3-carboxylic acid (3a). Similarly, glucosylation of 5-(3'-phenyl isoxazol-5'-yl)-1,2-benzisoxazole-3-carboxylic acid (3a) with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide (TAGBr) afforded tetra-acetyl derivative (4a) and followed by deacetylation of product 4a to give β-D-glucopyranosyl-5-(3'-phenyl isoxazol-5'-yl)-1,2-benzisoxazole-3-carboxylate (5a). The structures of the newly synthesized compounds have been assigned on the basis of FT-IR spectra, 1H NMR, 13C NMR, FAB-MS, optical activity and elemental analysis. Most of the synthesized products were screened their antibacterial and antifungal activities by cup-plate method. The present approach offers several advantages such as shorter reaction times, cleaner reactions, good yields, inexpensive reagent and mild reaction conditions.

Keywords

Chalcones Isoxazoles Carboxylic acids 2,3,4,6-Tetra-O-acetyl-a-D-glucopyranosyl bromide O-Glucosides

Article Details

How to Cite
Krushnaji Wanare, R. (2017). Highly Efficient Multistep Synthesis of Isoxazoles and Their Glucosides. Asian Journal of Organic & Medicinal Chemistry, 2(4), 130–133. https://doi.org/10.14233/ajomc.2017.AJOMC-P75

References

  1. J. Igarashi and M. Sunagawa, Bioorg. Med. Chem. Lett., 5, 2923 (1995); https://doi.org/10.1016/0960-894X(95)00505-N.
  2. P.S. Wharton and R.L. Nicholson, Res. New Phytol., 145, 457 (2000); https://doi.org/10.1046/j.1469-8137.2000.00600.x.
  3. V.N. Ingle, S.T. Kharche and U.G. Upadhyay, Indian J. Chem., 44B, 801 (2005).
  4. M. Kim, B. Grzeszczyk and A. Zamojski, Carbohydr. Res., 320, 244 (1999); https://doi.org/10.1016/S0008-6215(99)00160-3.
  5. J.B. Carr, H.G. Durham and D.K. Hass, J. Med. Chem., 20, 934 (1977); https://doi.org/10.1021/jm00217a014.
  6. H.G. Sen, D. Seth, P.R. Joshi and P. Rajagopalan, J. Med. Chem., 9, 431 (1966); https://doi.org/10.1021/jm00321a048.
  7. B.J. Wakefield and D.J. Wright, Adv. Heterocycl. Chem., 25, 147 (1980); https://doi.org/10.1016/S0065-2725(08)60692-3.
  8. A.K. Frederick, J.W. Frank, R.T. Nelson, L.P. Robert, P.B. Rudolf, H. Eugene, P. Irvin, D.H. Berl, O. Robert, D. George, E.L. John, E. Newstead, C. Louis and F. Karl, J. Am. Chem. Soc., 77, 2344 (1955);https://doi.org/10.1021/ja01613a105.
  9. F.P. Doyle, A.A.W. Long, J.H.C. Nayler and E.R. Stove, Nature, 192, 1183 (1961); https://doi.org/10.1038/1921183a0.
  10. T.S. Gardner, E. Wenis and J. Lee, J. Org. Chem., 26, 1514 (1961); https://doi.org/10.1021/jo01064a050.