Main Article Content

Abstract

Reaction of 3-methyl-5-(3'-aryl prop-2'-enoyl)-1,2-benzisoxazole (1a-j) with thiourea and alcoholic solution of KOH afforded 3-methyl-5-(4'-aryl-2'-thiopyrimidin-6'-yl)-1,2-benzisoxazoles (2a-j). Oxidation of products 2a-j using alkaline KMnO4 solution produces 5-(4'-aryl-2'-thiopyrimidin-6'- yl)-1,2-benzisoxazole-3-carboxylic acids (3a-j). Condensation of products 3a-j with 2,3,4,6-tetra-Oacetyl- α-D-glucopyranosyl bromide (TAGBr), the glucosylating agent synthesized 3-(2,3,4,6-tetra- O-acetyl-3-acetyl-β-D-glucopyranosyl)-5-(4'-aryl-2'-thiopyrimidin-6'-yl)-1,2-benzisoxazoles (4a-j). Subsequent deacetylation of compounds 4a-j were carried out with CH3ONa furnishes β-Dglucopyranosyl- 5-(4'-aryl-2'-thiopyrimidin-6'-yl)-1,2-benzisoxazole-3-carboxylates (5a-j). All the synthesized compounds were analyzed by elemental analysis (C, H and N), FT-IR, 1H NMR and mass spectral data. Most of the prepared compounds were analyzed their antibacterial and antifungal activities by cup-plate method. The present approach offers several advantages such as shorter reaction times, cleaner reactions, good yields, low-cost reagent and mild reaction conditions.

Keywords

Thiopyrimidines TAGBr Glycosylation O-Glucosides 1,2-Benzisoxazoles

Article Details

How to Cite
Krushnaji Wanare, R. (2019). A Novel and Facile Synthesis of Thiopyrimidines and O-Glucosides. Asian Journal of Organic & Medicinal Chemistry, 4(2), 65–69. https://doi.org/10.14233/ajomc.2019.AJOMC-P161

References

  1. S.M. Sondhi, R.N. Goyal, A.M. Lahoti, N. Singh, R. Shukla and R. Raghubir, Synthesis and Biological Evaluation of 2-Thiopyrimidine Derivatives, Bioorg. Med. Chem., 13, 3185 (2005); https://doi.org/10.1016/j.bmc.2005.02.047.
  2. S.A. Luzhnova, A.G. Tyrkov, N.M. Gabitova and E.A. Yurtaeva, Synthesis and Antimicrobial Activity of 5-(Arylmethylidene)-2,4,6-Pyrimidine-2,4,6-(1H,3H,5H)-Triones, Pharm. Chem. J., 52, 506 (2018); https://doi.org/10.1007/s11094-018-1849-7.
  3. K.M. Amin, M.M. Hanna, H.E. Abo-Youssef and R.F. George, Synthesis, Analgesic and Anti-Inflammatory Activities Evaluation of Some Bi-, Tri- and Tetracyclic Condensed Pyrimidines, Eur. J. Med. Chem., 44, 4572 (2009); https://doi.org/10.1016/j.ejmech.2009.06.028.
  4. J.M. Quintela, C. Peinador, L. González, I. Devesa, M.L. Ferrándiz, M.J. Alcaraz and R. Riguera, 6-Dimethylamino 1H-Pyrazolo[3,4-d]-pyrimidine Derivatives as New Inhibitors of Inflammatory Mediators in Intact Cells, Bioorg. Med. Chem., 11, 863 (2003); https://doi.org/10.1016/S0968-0896(02)00562-X.
  5. J.P. Zhou, Y.W. Ding, H.B. Zhang, L. Xu and Y. Dai, Synthesis and Anti-Inflammatory Activity of Imidazo[1,2-a]pyrimidine Derivatives, Chin. Chem. Lett., 19, 669 (2008); https://doi.org/10.1016/j.cclet.2008.04.020.
  6. H.S. Choi, Z. Wang, W. Richmond, X. He, K. Yang, T. Jiang, D. Karanewsky, X. Gu, V. Zhou, Y. Liu, J. Che, C.C. Lee, J. Caldwell, T. Kanazawa, I. Umemura, N. Matsuura, O. Ohmori, T. Honda, N. Gray and Y. He, Design and Synthesis of 7H-pyrrolo[2,3-d]pyrimidines as Focal Adhesion Kinase Inhibitors. Part 2, Bioorg. Med. Chem. Lett., 16, 2689 (2006); https://doi.org/10.1016/j.bmcl.2006.02.032.
  7. I. Devesa, M.J. Alcaraz, R. Riguera and M.L. Ferrándiz, A New Pyrazolo Pyrimidine Derivative Inhibitor of Cyclooxygenase-2 with Anti-Angiogenic Activity, Eur. J. Pharmacol., 488, 225 (2004); https://doi.org/10.1016/j.ejphar.2004.02.015.
  8. S. Baluja, N. Kacchadia and S. Chanda, Thiopyrimidine Derivatives: Synthesis and Antibacterial Activity, Pharm. Chem. J., 46, 117 (2012); https://doi.org/10.1007/s11094-012-0744-x.
  9. J.-E.Igarashi and M. Sunagawa, Structural Analysis by NMR of Antitumor Drug-DNA Complexes: 9-Aminoanthracycline (SM-5887), Bioorg. Med. Chem. Lett., 2, 2923 (1995); https://doi.org/10.1016/0960-894X(95)00505-N.
  10. H. Rudiger, H.-C. Siebert, D. Solis, J. Jimenez-Barbero, A. Romero, C.-W. Lieth, T. Diaz-Maurino and H.-J. Gabius, Medicinal Chemistry Based on the Sugar Code: Fundamentals of Lectinology and Experimental Strategies with Lectins as Targets, Curr. Med. Chem., 7, 389 (2000); https://doi.org/10.2174/0929867003375164.
  11. M.I. Nassar, E.-S.A. Aboutabl, D.M. Eskander, M.H. Grace1, E.-D.A. El-Khrisy and A.A. Sleem, Flavonoid Glycosides and Pharmacological Activity of Amphilophium paniculatum, Pharmacogn. Res., 5, 17 (2013); https://doi.org/10.4103/0974-8490.105643.
  12. B.G. Davis, Recent Developments in Glycoconjugates, J. Chem. Soc. Perkin Trans. I, 3215 (1999); https://doi.org/10.1039/a809773i.
  13. B. Szechner, B. Grzeszczyk, B. Furman and M. Chmielewski, Glycosyl Hydroperoxides, J. Carbohydr. Chem., 37, 104 (2018); https://doi.org/10.1080/07328303.2018.1438453.
  14. P.S. Wharton and R.L. Nicholson, Temporal Synthesis and Radiolabelling of the Sorghum 3-Deoxyanthocyanidin Phytoalexins and the Anthocyanin, Cyanidin 3-Dimalonyl glucoside, Res. New Phytol., 145, 457 (2000); https://doi.org/10.1046/j.1469-8137.2000.00600.x.
  15. R.K. Wanare, Highly Efficient Multistep Synthesis of Isoxazoles and their Glucosides, Asian J. Org. Med. Chem., 2, 130 (2017); https://doi.org/10.14233/ajomc.2017.AJOMC-P75.