Main Article Content

Abstract

Two enolizable ketones, 1-(4-bromophenyl)-3-(2,4-dichlorophenyl)-2-propenone and 1-(4- bromophenyl)-3-(2-furyl)-2-propenone were reacted with six 5- substituted-2-amino benzenethiols, in dry ethanol containing trifluoroacetic acid to obtain 12 new compounds, 8-substituted-2,5-dihydro- 4-(4-bromophenyl)-2-(2,4-dichlorophenyl/2-furyl)-1,5-benzothiazepines in 59-73 % yields. The products were characterized on the basis of microanalytical data and spectral analysis comprising IR, 1H NMR, and mass studies. All the synthesized compounds have been screened for their antimicrobial activity against the Gram-positive bacteria, Staphylococcus aureus and Gram-negative bacteria, Escherichia coli, Enterobacter cloacae and the fungus, Candida albicans with respective reference compounds. 8- Ethoxy-4-(4-bromo-phenyl)-2-(2,4-dichlorophenyl)-2,5-dihydro-1,5-benzothiazepine and 8-bromo-4- (4-bromophenyl)-2-(2-furyl)-2,5-dihydro-1,5-benzothiazepine compounds displayed notable antibacterial activity against Staphylococcus aureus, which was higher than that of the reference standard vancomycin at the concentration of 200 μg/disc. Six of the newly synthesized compounds were found to show significant antifungal activity against Candida albicans.

Keywords

Enolisable ketones Trifluoroacetic acid Antibacterial Antifungal activity

Article Details

How to Cite
Pant, S., & Yadav, M. (2018). Syntheses of 1,5-Benzothiazepines: Part 52: Syntheses of 8-Substituted 2,5-Dihydro-4-(4-bromophenyl)-2-(2-furyl/2,4-dichloro-phenyl)-1,5-benzothiazepines. Asian Journal of Organic & Medicinal Chemistry, 3(3), 98–101. https://doi.org/10.14233/ajomc.2018.AJOMC-P131

References

  1. C. Zhuang, W. Zhang, C. Sheng, W. Zhang, C. Xing and Z. Miao, Chem. Rev., 117, 7762 (2017); https://doi.org/10.1021/acs.chemrev.7b00020.
  2. T.D. Tran, T.-T.-N. Nguyen, T.-H. Do, T.-N.-P. Huynh, C.-D. Tran and K.-M. Thai, Molecules, 17, 6684 (2012); https://doi.org/10.3390/molecules17066684.
  3. M.J. Matos, S. Vazquez-Rodriguez, E. Uriarte and L. Santana, Potential Pharmacological Uses of Chalcones: A Patent Review (from June 2011-2014); Expert Opin. Ther. Pat., 25, 315 (2015); https://doi.org/10.1517/13543776.2014.995627.
  4. G.R. Mhaske, S. Bajod, D. Ambhore and S.N. Shelke, Synthesis and Evaluation of Novel 1,5-Benzothiazepine Derivatives as Anti- Inflam-matory Agents, Int. J. Innov. Res. Sci. Eng. Technol., 3, 13208 (2014).
  5. S.H. Snyder and I.J. Reynolds, Calcium-Antagonist Drugs-Receptor Interactions that Clarify Therapeutic Effects, N. Engl. J. Med., 313, 995 (1985); https://doi.org/10.1056/NEJM198510173131606.
  6. S.N. Lopez, M.V. Castelli, S.A. Zacchino, J.N. Domínguez, G. Lobo, J. Charris-Charris, J.C.G. Cortés, J.C. Ribas, C. Devia, A.M. Rodríguez and R.D. Enriz, in vitro Antifungal Evaluation and Structure-Activity Relationships of a New Series of Chalcone Derivatives and Synthetic Analogues with Inhibitory Properties against Polymers of the Fungal Cell Wall, Bioorg. Med. Chem., 9, 1999 (2001); https://doi.org/10.1016/S0968-0896(01)00116-X.
  7. M. Kodomari, T. Noguchi and T. Aoyama, Solvent-Free Synthesis of 1,5-Benzothiazepines and Benzodiazepines on Inorganic Supports, Synth. Commun., 34, 1783 (2004); https://doi.org/10.1081/SCC-120034159.
  8. T. Yamamori, H. Harada, E. Oosugi and K. Sekai, Process for Preparing Benzothiazepine Derivatives, Eur. Patent EP0609,031A1 (1994).
  9. S. Pant, Avinash and M. Yadav, Synthesis of 1,5-Benzothiazepines: Part 41: Single Pot Synthesis and Antimicrobial Studies of 8-Substituted-2,5-dihydro-4-(4-substituted aryl)-2-(2-furyl)-1,5-benzothiazepines, Indian J. Heterocycl. Chem., 23, 381 (2014).
  10. S. Kimoto, M. Haruna, E. Matsuura, O. Uno, M. Ishii, K. Yoshimura, S. Hirono, M. Ueda and K. Iwaki, Pharmacological Studies on a New Antihypertensive Agent, S-2150, a Benzothiazepine Derivative: 3. Hypo-tensive and Antimyocardial-Stunning Effects in Dogs, J. Cardiovasc. Pharmacol., 29, 180 (1997); https://doi.org/10.1097/00005344-199702000-00005.
  11. W. Stephens and L. Field, A Seven-Membered Heterocycle from o-Aminobenzenethiol and Chalcone, J. Org. Chem., 24, 1576 (1959); https://doi.org/10.1021/jo01092a610.
  12. M.D. Desai and K.K. Desai, Synthesis and Antibacterial Activity of 1,5-benzothiazepine Derivatives, Asian J. Chem., 14, 974 (2002).
  13. D.S. Ghotekar, R.S. Joshi, P.G. Mandhane, S.S. Bhagat and C.H. Gill, Synthesis of Some Biologically Important Fluorinated 3-Chlorochro-mones and 1,5-benzothiazepines as Antimicrobial and Antifungal Agents, Indian J. Chem., 49B, 1267 (2010).
  14. M. Al-Smadi and F. Al-Momani, Synthesis, Characterization and Anti-microbial Activity of New 1,2,3-Selenadiazoles, Molecules, 13, 2740 (2008); https://doi.org/10.3390/molecules13112740.
  15. S. Pant and D. Saxena, Syntheses of 1,5-Benzothiazepines: Part 51: Syntheses of 8-Substituted-2,5-Dihydro-4-(3-Nitrophenyl)-2-Phenyl-1,5-Benzothiazepines, Asian J. Exp. Sci., 32, 29 (2018).
  16. L. Wang, P. Zhang, X. Zhang, Y. Zhang, Y. Li and Y. Wang, Synthesis and Biological Evaluation of a Novel Series of 1,5-Benzothiazepine Derivatives as Potential Antimicrobial Agents, Eur. J. Med. Chem., 44, 2815 (2009); https://doi.org/10.1016/j.ejmech.2008.12.021.