Main Article Content

Abstract

2-Aminobenzophenones are imperative chemical compounds in medicinal chemistry because of their application as valuable synthon for the synthesis of wide varieties heterocyclic compounds having versatile biological activities. Thus, over the past decades, medicinal chemists are increasing attracted towards exploring various synthetic routes and methodologies for the synthesis of 2- aminobenzophenone and its derivatives. This mini-review covers some of the finest methods for the synthesis of 2-aminobenzophenone as well as biological activities of its novel derivatives. The review also discusses the various bioactive compounds in which 2-aminobenzophenones were used as a precursor.

Keywords

2-Aminobenzophenone 2-Aminobenzonitrile 2-Benzoylbenzoic acid Anthranilic acid

Article Details

How to Cite
Chaudhary, S., Sharda, S., Prasad, D., Kumar, S., & K. Singh, R. (2018). Synthetic Methodologies and Pharmacological Significance of 2-Aminobenzophenones as Versatile Building Block. Asian Journal of Organic & Medicinal Chemistry, 3(3), 107–115. https://doi.org/10.14233/ajomc.2018.AJOMC-P136

References

  1. D.A. Walsh, The Synthesis of 2-Aminobenzophenones, Synthesis, 677 (1980); https://doi.org/10.1055/s-1980-29169.
  2. F.P. Ma, G.T. Cheng, Z.G. He and Z.H. Zhang, A New and Efficient Procedure for Friedländer Synthesis of Quinolines in Low Melting Tartaric Acid-Urea Mixtures, Aust. J. Chem., 65, 409 (2012); https://doi.org/10.1071/CH12025.
  3. M. Abdollahi-Alibeik and M. Pouriayevali, Nanosized MCM-41 Supp-orted Protic Ionic Liquid as an Efficient Novel Catalytic System for Friedlander Synthesis Of Quinolines, Catal. Commun., 22, 13 (2012); https://doi.org/10.1016/j.catcom.2012.02.004.
  4. M.S. Reddy, N. Thirupathi and Y.K. Kumar, A Quick and Efficient Route to Substituted Quinolines by Electrophilic Cyclization of 1-(2-Aminoaryl)-2-yn-1-ols, RSC Adv., 2, 3986 (2012); https://doi.org/10.1039/C2RA20213A.
  5. K. Karnakar, J. Shankar, S.N. Murthy, K. Ramesh and Y.V.D. Nageswar, An Efficient Protocol for the Synthesis of 2-Phenylquinazolines Catalyzed by Ceric Ammonium Nitrate (CAN), Synlett, 1089 (2011); https://doi.org/10.1055/s-0030-1259960.
  6. X.Y. Liu, Y.P. Xiao, F.M. Siu, L.C. Ni, Y. Chen, L. Wang and C.M. Che, Highly Regio-, Diastereo- and Enantioselective One-Pot Gold/Chiral Brønsted Acid-Catalysed Cascade Synthesis of Bioactive Diversely Substi-tuted Tetrahydroquinolines, Org. Biomol. Chem., 10, 7208 (2012); https://doi.org/10.1039/c2ob25753j.
  7. Z.H. Zhang, X.N. Zhang, L.P. Mo, Y.X. Li and F.P. Ma, Catalyst-Free Synthesis of Quinazoline Derivatives using Low Melting Sugar-Urea-Salt Mixture as a Solvent, Green Chem., 14, 1502 (2012); https://doi.org/10.1039/c2gc35258c.
  8. C. Derabli, R. Boulcina, G. Kirsch, B. Carboni and A. Debache, Catalyzed Mild and Efficient Synthesis of 1,2-Dihydroquinazolines via a One-Pot Three-Component Protocol, Tetrahedron Lett., 55, 200 (2014); https://doi.org/10.1016/j.tetlet.2013.10.157.
  9. M. Dabiri, M. Bahramnejad and S. Bashiribod, Catalyzed Multicompo-nent Reaction: Direct, Mild and Efficient Procedure for the Synthesis of 1,2-Dihydroquinazoline Derivatives, Mol. Divers., 14, 507 (2010); https://doi.org/10.1007/s11030-009-9219-8.
  10. M.B. Gawande, A.K. Rathi, I.D. Nogueira, R.S. Varma and P.S. Branco, Magnetite-Supported Sulfonic Acid: A Retrievable Nanocatalyst for the Ritter Reaction and Multicomponent Reactions, Green Chem., 15, 1895 (2013); https://doi.org/10.1039/c3gc40457a.
  11. B.V.S. Reddy, M.R. Reddy, Y.G. Rao, J.S. Yadav and B. Sridhar, Cu(OTf)2-Catalyzed Synthesis of 2,3-Disubstituted Indoles and 2,4,5-Trisubstituted Pyrroles from a-Diazoketones, Org. Lett., 15, 464 (2013); https://doi.org/10.1021/ol303206w.
  12. D. Tsvelikhovsky and S.L. Buchwald, Concise Palladium-Catalyzed Synthesis of Dibenzodiazepines and Structural Analogues, J. Am. Chem. Soc., 133, 14228 (2011); https://doi.org/10.1021/ja206229y.
  13. M. Anzini, S. Valenti, C. Braile, A. Cappelli, S. Vomero, S. Alcaro, F. Ortuso, L. Marinelli, V. Limongelli, E. Novellino, L. Betti, G. Giannaccini, A. Lucacchini, S. Daniele, C. Martini, C. Ghelardini, L. Di Cesare Mannelli, G. Giorgi, M.P. Mascia and G. Biggio, New Insight into the Central Benzo-diazepine Receptor-Ligand Interactions: Design, Synthesis, Biological Evaluation and Molecular Modeling of 3-Substituted 6-Phenyl-4H-imidazo[1,5- a ][1,4]benzodiazepines and Related Compounds, J. Med. Chem., 54, 5694 (2011); https://doi.org/10.1021/jm2001597.
  14. R.V. Coombs, R.P. Danna, M. Denzer, G.E. Hardtmann, B. Huegi, G. Koletar, J. Koletar, H. Ott and E. Jukniewicz, Synthesis and Antiinflam-matory Activity of 1-Alkyl-4-aryl-2(1H)-quinazolines and Quinazolin-ethiones, J. Med. Chem., 16, 1237 (1973); https://doi.org/10.1021/jm00269a006.
  15. W.J. Welstead, J.H.W. Moran, H.F. Stauffer, L.B. Turnbull and L.F. Sancilio, Antiinflammatory Agents. 1. Synthesis and Antiinflammatory Activity of 2-Amino-3-Benzoylphenylacetic Acid, J. Med. Chem., 22, 1074 (1979); https://doi.org/10.1021/jm00195a012.
  16. E.R. Ottosen, M.D. Sørensen, F. Björkling, T. Skak-Nielsen, M.S. Fjording, H. Aaes and L. Binderup, Synthesis and Structure Activity Relationship of Aminobenzophenones. A Novel Class of p38 MAP Kinase Inhibitors with High Antiinflammatory Activity, J. Med. Chem., 46, 5651 (2003); https://doi.org/10.1021/jm030851s.
  17. J.C.E. Simpson and O. Stephenson, Cinnolines. Part I. Some New Examples, J. Chem. Soc., 353 (1942); https://doi.org/10.1039/jr9420000353.
  18. R.M. Pinder and J.H. Wieringa, Third-Generation Antidepressants, Med. Res. Rev., 13, 259 (1993); https://doi.org/10.1002/med.2610130304.
  19. H.L. Singh, Synthesis, Spectroscopic Characterization and 3D Molecular Modeling of Lead(II) Complexes of Unsymmetrical Tetradentate Schiff-Base Ligands, Res. Chem. Intermed., 37, 1087 (2011); https://doi.org/10.1007/s11164-011-0319-6.
  20. J.H. Hall, F.E. Behr and R.L. Reed, Cyclization of 2-Azidobenzo-phenones to 3-Phenylanthranils. Examples of an Intramolecular 1,3-Dipolar Addition, J. Am. Chem. Soc., 94, 4952 (1972); https://doi.org/10.1021/ja00769a027.
  21. L.H. Sternbach, R.I. Fryer, W. Metlesics, G. Sach and A. Stempel, Quinazolines and 1,4-Benzodiazepines. V. o-Aminobenzophenones, J. Org. Chem., 27, 3781 (1962); https://doi.org/10.1021/jo01058a009.
  22. J. Yu, H.R. Moon, B.K. Min and J.N. Kim, 2-Arylindoles: A New Entry to Transition Metal-free Synthesis of 2-Aminobenzophenones, Bull. Korean Chem. Soc., 37, 893 (2016); https://doi.org/10.1002/bkcs.10796.
  23. J. Chen, J. Li and W. Su, Palladium-Catalyzed Direct Addition of 2-Aminobenzonitriles to Sodium Arylsulfinates: Synthesis of o-Amino-benzophenones, Molecules, 19, 6439 (2014); https://doi.org/10.3390/molecules19056439.
  24. J. Chen, L. Ye and W. Su, Palladium-Catalyzed Direct Addition of Aryl-boronic Acids to 2-Aminobenzonitrile Derivatives: Synthesis, Biological Evaluation and in silico Analysis of 2-Aminobenzophenones, 7-Benzoyl-2-Oxoindolines and 7-Benzoylindoles, Org. Biomol. Chem., 12, 8204 (2014); https://doi.org/10.1039/C4OB00978A.
  25. C. Mateos, J.A. Rincon and J. Villanueva, Efficient and Scalable Synthesis of Ketones via Nucleophilic Grignard Addition to Nitriles using Continuous Flow Chemistry, Tetrahedron Lett., 54, 2226 (2013); https://doi.org/10.1016/j.tetlet.2013.02.069.
  26. E. Reeder and L.H. Sternbach, US Patent 3239564, Hoffmann-La Roche, Inc., Chem. Abstr., 64, 19498 (1966).
  27. E. Reeder and L.H. Sternbach, US Patent 313615, Hoffmann-La Roche, Inc., Chem. Abstr., 61, 9515 (1964).
  28. E.Q. Ma, P. Wang, P.H. Li and P.L. Mo, A Mild And Practical Procedure for Synthesis of Substituted 2-Aminobenzophenones, Res. Chem. Intermed., 41, 6433 (2015); https://doi.org/10.1007/s11164-014-1751-1.
  29. P.H. Tran, H.Q. Phung, P.E. Hansen, H.N. Tran and T.N. Le, Efficient Friedel-Crafts Benzoylation of Aniline Derivatives with 4-Fluorobenzoyl Chloride using Copper Triflate in the Synthesis of Aminobenzo-phenones Synth. Commun., 46, 893 (2016); https://doi.org/10.1080/00397911.2016.1148164.
  30. T. Feng, M. Tian, X. Zhang and X. Fan, Tunable Synthesis of Functi-onalized Cyclohexa-1,3-dienes and 2-Aminobenzophenones/Benzoate from the Cascade Reactions of Allenic Ketones/Allenoate with Amines and Enones, J. Org. Chem., 83, 5313 (2018); https://doi.org/10.1021/acs.joc.8b00473.
  31. P.G. Gassman and H.R. Drewes, The ortho Functionalization of Aromatic Amines. Benzylation, Formylation and Vinylation of Anilines, J. Am. Chem. Soc., 100, 7600 (1978); https://doi.org/10.1021/ja00492a028.
  32. K.H. Wunsch and A.J. Boulton, Indoxazenes and Anthranils, Adv. Heterocyst. Chem., 8, 277 (1967); https://doi.org/10.1016/S0065-2725(08)60609-1.
  33. R.B. Davis and L.C. Pizzini, Condensation of Aromatic Nitro Compounds with Acrylacetonitriles 1,2II. Some p-Substituted Nitrobenzenes, J. Org. Chem., 25, 1884 (1960); https://doi.org/10.1021/jo01081a015.
  34. J. Safaei-Ghomi, M. Fadaeian and A.A. Hatami, A Convenient Method for the Preparation of 2-Aminobenzophenone Derivatives under Ultrasonic Irradiation, Turk. J. Chem., 31, 89 (2007).
  35. J. Sakowski, M. Böhm, I. Sattler, H.-M. Dahse and M. Schlitzer, Synthesis, Molecular Modeling and Structure Activity Relationship of Benzophenone-Based CAAX-Peptidomimetic Farnesyltransferase Inhibitors, J. Med. Chem., 44, 2886 (2001); https://doi.org/10.1021/jm010872r.
  36. H.-P. Hsieh, J.-P. Liou, Y.-T. Lin, N. Mahindroo, J.-Y. Chang, Y.-N. Yang, S.-S. Chern, U.-K. Tan, C.-W. Chang, T.-W. Chen, C.-H. Lin, Y.-Y. Chang and C.-C. Wang, Structure-Activity and Crystallographic Analysis of Benzophenone Derivatives-The Potential Anticancer Agents, Bioorg. Med. Chem. Lett., 13, 101 (2003); https://doi.org/10.1016/S0960-894X(02)00850-8.
  37. J.H. Hochman, M. Yamazaki, T. Ohe and J.H. Lin, Evaluation of Drug Interactions with p-Glycoprotein in Drug Discovery: in vitro Assess-ment of the Potential for Drug-Drug Interactions with p-Glycoprotein, Curr. Drug Metab., 3, 257 (2002); https://doi.org/10.2174/1389200023337559.
  38. D.-S. Su, J.L. Lim, E. Tinney, B.-L. Wan, K.L. Murphy, D.R. Reiss, C.M. Harrell, S.S. O’Malley, R.W. Ransom, R.S.L. Chang, D.J. Pettibone, J. Yu, C. Tang, T. Prueksaritanont, R.M. Freidinger, M.G. Bock and N.J. Anthony, 2-Aminobenzophenones as a Novel Class of Bradykinin B1 Receptor Antagonists, J. Med. Chem., 51, 3946 (2008); https://doi.org/10.1021/jm800199h.
  39. J.-P. Liou, C.-W. Chang, J.-S. Song, Y.-N. Yang, C.-F. Yeh, H.-Y. Tseng, Y.-K. Lo, Y.-L. Chang, C.-M. Chang and H.-P. Hsieh, Synthesis and Structure Activity Relationship of 2-Aminobenzophenone Derivatives as Antimitotic Agents, J. Med. Chem., 45, 2556 (2002); https://doi.org/10.1021/jm010365+.
  40. S. Cortez-Maya , E. Cortes Cortes, S. Hernández-Ortega, T.R. Apan and M. Martínez-García, Synthesis of 2-Aminobenzophenone Derivatives and Their Anticancer Activity, Synth. Commun., 42, 46 (2012); https://doi.org/10.1080/00397911.2010.521435.
  41. J.-P. Liou, J.-Y. Chang, C.-W. Chang, C.-Y. Chang, N. Mahindroo, F.-M. Kuo and H.-P. Hsieh, Synthesis and Structure Activity Relationships of 3-Aminobenzophenones as Antimitotic Agents, J. Med. Chem., 47, 2897 (2004); https://doi.org/10.1021/jm0305974.
  42. R.K. Singh, S. Devi and D.N. Prasad, Synthesis, Physicochemical and Biological Evaluation of 2-Amino-5-chlorobenzophenone Derivatives as Potent Skeletal Muscle Relaxants, Arab. J. Chem., 8, 307 (2015); https://doi.org/10.1016/j.arabjc.2011.11.013.
  43. R.K. Singh, D.N. Prasad and T.R. Bhardwaj, Design, Synthesis and Evaluation of Aminobenzophenone Derivatives Containing Nitrogen Mustard Moiety as Potential Central Nervous System Antitumor Agent, Med. Chem. Res., 22, 5901 (2013); https://doi.org/10.1007/s00044-013-0582-8.
  44. G. Fareed, M.A. Versian, N. Afza, N. Fareed, L. Iqbal and M. Lateef, Structure activity Relationship: Antioxidant Potential of Some Novel Schiff Bases Containing Benzophenone Moiety, Int. J. Curr. Pharm. Res., 5, 61 (2013).
  45. P. Li, K. Sahore, J. Liu and R.K. Singh, Synthesis and Antimicrobial Evaluation of 2-Aminobenzophenone Linked 1,4-Dihydropyridine Deriv-atives, Asian J. Chem., 26, 5291 (2014); https://doi.org/10.14233/ajchem.2014.17403.
  46. T. Li, S. Singh, X. Zhai, X. Meng and R.K. Singh, Microwave-Assisted Synthesis, in silico ADME Prediction and Antibacterial Study of 2-(Substituted acetamido)-5-Nitrobenzophenone Derivatives, Asian J. Chem., 27, 2452 (2015); https://doi.org/10.14233/ajchem.2015.17914.
  47. A. Kamal, K.S. Babu, Y. Poornachandra, B. Nagaraju, S.M. Ali Hussaini S.P. Shaik, C.G. Kumar and A. Alarifi, Efficient and Green Sulfamic Acid Catalyzed Synthesis of New 1,2-Dihydroquinazoline Derivatives with Antibacterial Potential, Arab. J. Chem.; https://doi.org/10.1016/j.arabjc.2015.10.013.
  48. V. Muniyandi, N. Pravin, P. Subbaraj and N. Raman, Binding, Cleavage Performance and Eco-Friendly Catalytic Nature of Novel Complexes having 2-Aminobenzophenone Precursor, J. Photchem. Photobiol., 156, 11 (2016); https://doi.org/10.1016/j.jphotobiol.2016.01.004.
  49. Arshia, A.K. Khan, K.M. Khan, A. Ahmed, M. Taha and S. Perveen, Antibiofilm Potential of Synthetic 2-amino-5-chlorobenzophenone Schiff Bases and its Confirmation Through Fluorescence Microscopy, Microb. Pathog., 110, 497 (2017); https://doi.org/10.1016/j.micpath.2017.07.040.