Main Article Content

Abstract

A series of structurally diverse 4-aminoquinoline derivatives were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral study. All the newly synthesized compounds were inspected for their in vitro antitubercular activity against Mycobacterium tuberculosis (Mtb) H37Ra and BCG using an established XTT Reduction Menadione (XRMA) and nitrate reductase assay, respectively. The newly synthesized compounds exhibited minimum inhibitory concentration (IC50) ranging from 1.881 to >30 (μg/mL) against MtbH37Ra as Compounds 9p (IC50: 8.971 μg/mL), 9r (IC50: 1.881 μg/mL), 9t (IC50: 2.192 μg/mL) and 9u (IC50: 2.505 μg/mL). All the compounds further evaluated for their cytotoxic activity against HeLa, MCF-7 and THP-1 cell lines. The antibacterial screening study of these compounds was conducted against four different bacteria to asses there selectivity towards M. tuberculosis. Furthermore, molecular docking studies revealed the binding modes of the compounds in the binding site of the ATP-synthase of M. tuberculosis. These findings open the possibility for potential lead for antituberculosis chemotherapy.

Keywords

Quinoline analogues Antimycobacterium Cytotoxicity Molecular docking ATP synthase

Article Details

How to Cite
S. Gholap, S., S. Tambe, M., Chakraborty, S., Borkute, R., Choudhri, A., Sarkar, D., … B. Patil, R. (2018). Synthesis and Biological Screening of Fluorinated Analogues of 4-aminoquinoline Derivatives as Antitubercular Agents. Asian Journal of Organic & Medicinal Chemistry, 3(4), 190–203. https://doi.org/10.14233/ajomc.2018.AJOMC-P158

References

  1. L.E. Cowen, The Evolution of Fungal Drug Resistance: Modulating the Trajectory from Genotype to Phenotype, Nat. Rev. Microbiol., 6, 187 (2008); https://doi.org/10.1038/nrmicro1835.
  2. X.-D. Wang, W. Wei, P.-F. Wang, Y.-T. Tang, R.-C. Deng, B. Li, S.-S. Zhou, J.-W. Zhang, L. Zhang, Z.-P. Xiao, H. Ouyang and H.-L. Zhu, Novel 3-Arylfuran-2(5H)-one-fluoroquinolone Hybrid: Design, Synthesis and Evaluation as Antibacterial Agent, Bioorg. Med. Chem., 22, 3620 (2014); https://doi.org/10.1016/j.bmc.2014.05.018.
  3. M.L. Cristina, A.M. Spagnolo, N. Cenderello, P. Fabbri, M. Sartini, G. Ottria and P. Orlando, Multidrug-Resistant Acinetobacter baumannii Outbreak: An Investigation of the Possible Routes of Transmission, Public Health, 127, 386 (2013); https://doi.org/10.1016/j.puhe.2013.01.025.
  4. R. Zarrilli, S. Pournaras, M. Giannouli and A. Tsakris, Global Evolution of Multidrug-Resistant Acinetobacter baumannii Clonal Lineages, Int. J. Antimicrob. Agents, 41, 11 (2013); https://doi.org/10.1016/j.ijantimicag.2012.09.008.
  5. A. Mital, V.S. Negi and U. Ramachandran, Synthesis and Antimyco-bacterial Activities of Certain Trifluoromethylaminoquinoline Derivatives, ARKIVOC, 10, 220 (2006); https://doi.org/10.3998/ark.5550190.0007.a25.
  6. E.L. Corbett, C.T.J. Watt, N. Walker, D. Maher, B.G. Williams, M.C. Raviglione and C. Dye, The Growing Burden of Tuberculosis Global Trends and Interactions With the HIV Epidemic, Arch. Intern. Med., 163, 1009 (2003); https://doi.org/10.1001/archinte.163.9.1009.
  7. World Health Organization, ‘The WHO Global Tuberculosis Program’, (2003); http://www.who.int/gtb/.
  8. S. Houston and A. Fanning, Current and Potential Treatment of Tuberculosis, Drugs, 48, 689 (1994); https://doi.org/10.2165/00003495-199448050-00004.
  9. D. Alland, G.E. Kalkut, A.R. Moss, R.A. Mc Adam, J.A. Hahn, W. Bosworth, E. Drucker and B.R. Bloom, Transmission of Tuberculosis in New York City-An Analysis by DNA Fingerprinting and Conventional Epide-miologic Methods, Engl. J. Med. Chem., 330, 1710 (1994); https://doi.org/10.1056/NEJM199406163302403.
  10. A.C. Weltman and D.N. Rose, Tuberculosis Susceptibility Patterns, Predictors of Multidrug Resistance and Implications for Initial Therap-eutic Regimens at a New York City Hospital, Arch. Intern. Med., 154, 2161 (1994); https://doi.org/10.1001/archinte.1994.00420190058007.
  11. A. Mahapatra, S.P.N. Mativandlela, B. Binneman, P.B. Fourie, C.J. Hamilton, J.J.M. Meyer, F. van der Kooy, P. Houghton and N. Lall, Activity of 7-Methyljuglone Derivatives Against Mycobacterium tuberculosis and as Subversive Substrates for Mycothiol Disulfide Reductase, Bioorg. Med. Chem., 15, 7638 (2007); https://doi.org/10.1016/j.bmc.2007.08.064.
  12. M. Font, A. Monge, T. Ruiz and B. Heras, Structure-Activity Relation-ships in Quinoline Reissert Derivatives with HIV-1 Reverse Transcrip-tase Inhibitory Activity, Drug Des. Discov., 14, 259 (1997).
  13. T. Nakamura, M. Oka, K. Aizawa, H. Soda, M. Fukuda, K. Terashi, K. Ikeda, Y. Mizuta, Y. Noguchi, Y. Kimura, T. Tsuruo and S. Kohno, Direct Interaction between a Quinoline Derivative, MS-209, and Multi-drug Resistance Protein (MRP) in Human Gastric Cancer Cells, Biochem. Biophys. Res. Commun., 255, 618 (1999); https://doi.org/10.1006/bbrc.1999.0245.
  14. D. Kaminsky and R.I. Meltzer, Quinoline Antibacterial Agents. Oxolinic Acid and Related Compounds, J. Med. Chem., 11, 160 (1968); https://doi.org/10.1021/jm00307a041.
  15. R. Musiol, J. Jampilek, V. Buchta, L. Silva, H. Niedbala, B. Podeszwa, A. Palka, K. Majerz-Maniecka, B. Oleksyn and J. Polanski, Antifungal Properties of New Series of Quinoline Derivatives, Bioorg. Med. Chem., 14, 3592 (2006); https://doi.org/10.1016/j.bmc.2006.01.016.
  16. N.C. Warshakoon, J. Sheville, R.T. Bhatt, W. Ji, J.L. Mendez-Andino, K.M. Meyers, N. Kim, J.A. Wos, C. Mitchell, J.L. Paris, B.B. Pinney, O. Reizes and X.E. Hu, Design and Synthesis of Substituted Quinolines as Novel and Selective Melanin Concentrating Hormone Antagonists as Anti-Obesity Agents, Bioorg. Med. Chem. Lett., 16, 5207 (2006); https://doi.org/10.1016/j.bmcl.2006.07.006.
  17. A.E. Slobda, D. Powell, J.F. Poletto, W.C. Pickett, J.J. Gibbons Jr., D.H. Bell, A.L. Oronsky and S.S. Kerwar, Antiinflammatory and Anti-arthritic Properties of a Substituted Quinoline Carboxylic Acid, J. Rheumatol., 18, 855 (1991).
  18. M.V.N. de Souza, K.C. Pais, C.R. Kaiser, M.A. Peralta, M. de L. Ferreira and M.C.S. Lourenço, Synthesis and in vitro Antitubercular Activity of a Series of Quinoline Derivatives, Bioorg. Med. Chem., 17, 1474 (2009); https://doi.org/10.1016/j.bmc.2009.01.013.
  19. M. Foley and L. Tilley, Quinoline Antimalarials: Mechanisms of Action and Resistance and Prospects for New Agents, Pharmacol. Ther., 79, 55 (1998); https://doi.org/10.1016/S0163-7258(98)00012-6.
  20. K. Kaur, M. Jain, R.P. Reddy and R. Jain, Quinolines and Structurally Related Heterocycles as Antimalarials, Eur. J. Med. Chem., 45, 3245 (2010); https://doi.org/10.1016/j.ejmech.2010.04.011.
  21. A.P. Gorka, A. de Dios and P.D. Roepe, Quinoline Drug-Heme Inter-actions and Implications for Antimalarial Cytostatic versus Cytocidal Activities, J. Med. Chem., 56, 5231 (2013); https://doi.org/10.1021/jm400282d.
  22. E. Berning, The Role of Fluoroquinolones in Tuberculosis Today, Drugs, 61, 9 (2001); https://doi.org/10.2165/00003495-200161010-00002.
  23. T.E. Renau, J.P. Sanchez, M.A. Shapiro, J.A. Dever, S.J. Gracheck and J.M. Domagala, Effect of Lipophilicity at N-1 on Activity of Fluoro-quinolones against Mycobacteria, J. Med. Chem., 38, 2974 (1995); https://doi.org/10.1021/jm00015a021.
  24. T.E. Renau, J.P. Sanchez, J.W. Gage, J.A. Dever, M.A. Shapiro, S.J. Gracheck and J.M. Domagala, Structure-Activity Relationships of the Quinolone Antibacterials against Mycobacteria:? Effect of Structural Changes at N-1 and C-7, J. Med. Chem., 39, 729 (1996); https://doi.org/10.1021/jm9507082.
  25. R. Rustomjee, A.H. Diacon, J. Allen, A. Venter, C. Reddy, R.F. Patientia, T.C.P. Mthiyane, T. De Marez, R. van Heeswijk, R. Kerstens, A. Koul, K. De Beule, P.R. Donald and D.F. McNeeley, Early Bactericidal Activity and Pharmacokinetics of the Diarylquinoline TMC207 in Treatment of Pulmonary Tuberculosis, Antimicrob. Agents Chemother., 52, 2831 (2008); https://doi.org/10.1128/AAC.01204-07.
  26. N. Phummarin, H.I. Boshoff, P.S. Tsang, J. Dalton, S. Wiles, C.E. Barry 3rd and B.R. Copp, SAR and Identification of 2-(Quinolin-4-yloxy)-acetamides as Mycobacterium tuberculosis Cytochrome bc1 Inhibitors, MedChemComm, 7, 2122 (2016); https://doi.org/10.1039/C6MD00236F.
  27. P. Lu, H. Lill and D. Bald, ATP Synthase in Mycobacteria: Special Features and Implications for a Function as Drug Target, Biochim. Biophys. Acta, 1837, 1208 (2014); https://doi.org/10.1016/j.bbabio.2014.01.022.
  28. E. Segala, W. Sougakoff, A. Nevejans-Chauffour, V. Jarlier and S. Petrella, New Mutations in the Mycobacterial ATP Synthase: New Insights into the Binding of the Diarylquinoline TMC207 to the ATP Synthase C-Ring Structure, Antimicrob. Agents Chemother., 56, 2326 (2012); https://doi.org/10.1128/AAC.06154-11.
  29. A. Koul, N. Dendouga, K. Vergauwen, B. Molenberghs, L. Vranckx, R. Willebrords, Z. Ristic, H. Lill, I. Dorange, J. Guillemont, D. Bald and K. Andries, Diarylquinolines Target Subunit c of Mycobacterial ATP Synthase, Nat. Chem. Biol., 3, 323 (2007); https://doi.org/10.1038/nchembio884.
  30. R.S. Upadhayaya, J.K. Vandavasi, N.R. Vasireddy, V. Sharma, S.S. Dixit and J. Chattopadhyaya, Design, Synthesis, Biological Evaluation and Molecular Modelling Studies of Novel Quinoline Derivatives Against Mycobacterium tuberculosis, Bioorg. Med. Chem., 17, 2830 (2009); https://doi.org/10.1016/j.bmc.2009.02.026.
  31. S. Singh, K.K. Roy, S.R. Khan, V.K. Kashyap, A. Sharma, S. Jaiswal, S.K. Sharma, M.Y. Krishnan, V. Chaturvedi, J. Lal, S. Sinha, A. Dasgupta, R. Srivastava and A.K. Saxena, Novel, Potent, Orally Bioavailable and Selective Mycobacterial ATP Synthase Inhibitors that Demonstrated Activity Against Both Replicating and Non-Replicating, Bioorg. Med. Chem., 23, 742 (2015); https://doi.org/10.1016/j.bmc.2014.12.060.
  32. R.S. Upadhayaya, G.M. Kulkarni, N.R. Vasireddy, J.K. Vandavasi, S.S. Dixit, V. Sharma and J. Chattopadhyaya, Bioorg. Med. Chem., 17, 4681 (2009); https://doi.org/10.1016/j.bmc.2009.04.069.
  33. Y. Wu, K. Hu, D. Li, L. Bai, S. Yang, J.B. Jastrab, S. Xiao, Y. Hu, S. Zhang, K.H. Darwin, T. Wang and H. Li, Design, Synthesis and Biolo-gical Evaluation of Novel Triazole, Urea and Thiourea Derivatives of Quinoline against Mycobacterium tuberculosis, Mol. Microbiol., 105, 227 (2017); https://doi.org/10.1111/mmi.13695.
  34. O. Trott, A.J. Olson and A.D. Vina, AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading, J. Comput. Chem., 31, 455 (2010).
  35. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, UCSF Chimera-A Visualization System for Exploratory Research and Analysis, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084.
  36. A. Bordogna, A. Pandini and L. Bonati, Predicting the Accuracy of Protein–Ligand Docking on Homology Models, J. Comput. Chem., 32, 81 (2011). https://doi.org/10.1002/jcc.21601.
  37. R.A. Laskowski and M.B. Swindells, LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery, J. Chem. Inf. Model., 51, 2778 (2011); https://doi.org/10.1021/ci200227u.
  38. A.C. Wallace, R.A. Laskowski and J.M. Thornton, LIGPLOT: A Program to Generate Schematic Diagrams of Protein-ligand Interactions, Protein Eng., 8, 127 (1995); https://doi.org/10.1093/protein/8.2.127.
  39. S.S. Gholap and S.R. Ugale, A Total Synthesis of the Cyclic Depsi-peptide Chaiyaphumine-A, Chem. Select, 2, 7445 (2017); https://doi.org/10.1002/slct.201701520.
  40. S.R. Ugale and S.S. Gholap, An Efficient Synthesis of Structurally Diverse 2-Methyl-N-[(3-phenylamino)oxetan-3-yl]-2-propanesulfinamide Derivatives under Catalyst Free Conditions, Chem. Pap., 71, 2435 (2017); https://doi.org/10.1007/s11696-017-0237-1.
  41. S.S. Gholap and N. Gunjal, 2,4,6-Trichloro-1,3,5-triazine (TCT) Mediated One Pot Direct Synthesis of N-benzoylthioureas from Carboxylic Acids, Arab. J. Chem., 10, S2750 (2017); https://doi.org/10.1016/j.arabjc.2013.10.021.
  42. S.S. Gholap, Pyrrole: An Emerging Scaffold for Construction of Valuable Therapeutic Agents, Eur. J. Med. Chem., 110, 13 (2016); https://doi.org/10.1016/j.ejmech.2015.12.017.
  43. V.D. Dhakane, S.S. Gholap, U.P. Deshmukh, H.V. Chavan and B.P. Bandgar, An Efficient and Green Method for the Synthesis of [1,3]Oxazine Derivatives Catalyzed by Thiamine Hydrochloride (VB1) in Water, C.R. Chim., 17, 431 (2014); https://doi.org/10.1016/j.crci.2013.06.002.
  44. S.S. Gholap, V.D. Dhakane and S. Sandip, Solid-Supported Dichloro-[1,3,5]-triazine: A Versatile Synthetic Auxiliary for Direct Synthesis of N-Sulfonylamines from Sulphonic Acid and Amine, Jordan J. Chem., 7, 279 (2012).

Most read articles by the same author(s)