Main Article Content

Abstract

A series of side chain modified structurally diverse 3,4-dihydro-2H-benzo[b][1,4]-oxazine-2-carboxylic acid derivatives were synthesized and characterized by IR, 1H NMR, 13C NMR and mass spectral study. All the newly synthesized compounds were examined for their in vitro antitubercular activity against Mycobacterium tuberculosis H37Ra. The synthesized compounds exhibited minimum inhibitory concentration (IC50) ranging from 5.98 to >30 (μg/mL) against MtbH37Ra. Among the screened compounds, compounds 5a, 5c, 5d, 5f, 5g, 5h, 5I, 5j exhibited IC50 as 10.42, 11.81, 18.79, 5.98, 19.21, 24.81 and 14.81 μg/mL, respectively. The antibacterial screening study of these compounds was conducted against four different bacteria to asses there selectivity towards MTB. The antibacterial screening of all the synthesized compounds was conducted against four bacterial strains (Gram-negative strains: E.coli and S.aureus; Gram-positive strains: P. aeruginosa and B.subtilis. The compounds 5a, 5b, 5c, 5e and 5j showed higher antibacterial activity up to 7-25 μg/mL. Furthermore, molecular docking studies revealed the binding modes of the compounds in the binding site of the good agreement with the in vitro antitubercular screening. The compounds 5a, 5c and 5f with free energy of binding lower than -9.0 Kcal/mol binds more favourably at the binding site of panC as compared to other compounds. Specifically, the compound 5f with free energy of binding -9.6 Kcal/mol is indeed found more active in docking study as well as in the in vitro antitubercular screening. These findings open the possibility for potential lead for antituberculosis chemotherapy.

Keywords

Benzooxazines Antitubercular agents

Article Details

How to Cite
S. Tambe, M., Gadhe, S., Choudhari, A., Sarkar, D., N. Sangshetti, J., & B. Patil, R. (2020). Synthesis and Biological Evaluation of 3,4-Dihydro-2H-benzo[b][1,4]-oxazine-2-carboxylic Acid Derivatives as Antitubercular Agents. Asian Journal of Organic & Medicinal Chemistry, 5(2), 138–148. https://doi.org/10.14233/ajomc.2020.AJOMC-P261

References

  1. L. Zhang, J. Mao, S. Wang, Y. Zheng, X. Liu and Y. Cheng, Benzoxazine Based High Performance Materials with Low Dielectric Constant: A Review, Curr. Org. Chem., 23, 809 (2019); https://doi.org/10.2174/1385272823666190422130917
  2. M. Akhter, S. Habibullah, S.M. Hasan, M.M. Alam, N. Akhter and M. Shaquiquzzaman, Synthesis of Some New 3,4-Dihydro-2H-1,3-Benzoxazines Under Microwave Irradiation in Solvent-Free Conditions and their Biological Activity, Med. Chem. Res., 20, 1147 (2011); https://doi.org/10.1007/s00044-010-9451-x
  3. S. Cui, C.R. Arza, P. Froimowicz and H. Ishida, Developing Further Versatility in Benzoxazine Synthesis via Hydrolytic Ring-Opening, Polymers, 12, 694 (2020); https://doi.org/10.3390/polym12030694
  4. N.A. El-Salam and S. El-Din, 3,4-Dihydro-2H-1,3-benzoxazines and their Oxo-Derivatives-Chemistry and Bioactivities, J. Serb. Chem. Soc. (2019); https://doi.org/10.2298/JSC180530001S
  5. X. Li, N. Liu, H. Zhang, S.E. Knudson, R.A. Slayden and P.J. Tonge, Synthesis and SAR Studies of 1,4-Benzoxazine MenB Inhibitors: Novel Antibacterial Agents against Mycobacterium tuberculosis, Bioorg. Med. Chem. Lett., 20, 6306 (2010); https://doi.org/10.1016/j.bmcl.2010.08.076
  6. S. Konda, S. Raparthi, K. Bhaskar, R.J. Munaganti, V. Guguloth, L. Nagarapu and D.M. Akkewar, Synthesis and Antimicrobial Activity of Novel Benzoxazine Sulfonamide Derivatives, Bioorg. Med. Chem. Lett., 25, 1643 (2015); https://doi.org/10.1016/j.bmcl.2015.01.026
  7. D.F. Fidler, Legal Issues Associated with Antimicrobial Drug Resistance, Emerg. Infect. Dis., 4, 169 (1998); https://doi.org/10.3201/eid0402.980204
  8. T. Yamakawa, J. Mitsuyama and K.J. Hayashi, in vitro and in vivo Antibacterial Activity of T-3912, A Novel Non-Fluorinated Topical Quinolone, J. Antimicrob. Chem., 49, 455 (2002); https://doi.org/10.1093/jac/49.3.455
  9. A. Korolyov, S. Dorbes, J. Azéma, B. Guidetti, M. Danel, D. Lamoral-Theys, T. Gras, J. Dubois, R. Kiss, R. Martino and M. Malet-Martino, Novel Lipophilic 7H-Pyrido[1,2,3-de]-1,4-benzoxazine-6-carboxylic Acid Derivatives as Potential Antitumor Agents: Improved Synthesis and in vitro Evaluation, Bioorg. Med. Chem. Lett., 18, 8537 (2010); https://doi.org/10.1016/j.bmc.2010.10.039
  10. R. Fringuelli, N. Giacche, L. Milanese, E. Cenci, A. Macchiarulo, A. Vecchiarelli, G. Costantino and F. Schiaffella, Bulky 1,4-Benzoxazine Derivatives with Antifungal Activity, Bioorg. Med. Chem., 17, 3838 (2009); https://doi.org/10.1016/j.bmc.2009.04.051
  11. J. Peng, Q. Hu, C. Gu, B. Liu, F. Jin, J. Yuan, J. Feng, L. Zhang, J. Lan, Q. Dong and G. Cao, Discovery of Potent and Orally Bioavailable Inhibitors of Human Uric Acid Transporter 1 (hURAT1) and Binding Mode Prediction using Homology Model, Bioorg. Med. Chem. Lett., 26, 277 (2016); https://doi.org/10.1016/j.bmcl.2015.12.040
  12. H. Cho, Y. Iwama, K. Okano and H. Tokuyama, Synthesis of a Human Urate Transporter-1 Inhibitor, an Arginine Vasopressin Antagonist, and a 17b-Hydroxysteroid Dehydrogenase Type-3 Inhibitor, Using Ring-Expansion of Cyclic Ketoximes with DIBALH, Chem. Pharm. Bull. (Tokyo), 62, 354 (2014); https://doi.org/10.1248/cpb.c13-00961
  13. I. Kimiyoshi, New Antihyperuricemic Medicine: Febuxostat, Puricase, etc., Nihon Rinsho (J. Clin. Med.), 66, 759 (2008) (In Japanese).
  14. K. Hirata, N. Ogawa, Y. Shinagawa, T. Kiguchi, T. Inoue, Y. Komeda, I. Yamashita and Y. Kamiya, Method for Producing Nitrogen Containing Fused Ring Compound, WO20071390002 (2017).
  15. C. Hidetsura, Y. Iwama, K. Okano and H. Tokuyama, Synthesis of a Human Urate Transporter-1 Inhibitor, an Arginine Vasopressin Antagonist, and a 17b-Hydroxysteroid Dehydrogenase Type-3 Inhibitor, using Ring-Expansion of Cyclic Ketoximes with DIBALH, Chem. Pharm. Bull., 62, 354 (2014); https://doi.org/10.1248/cpb.c13-00961
  16. V. Hernandez-Olmos, A. Abdelrahman, A. El-Tayeb, D. Freudendahl, S. Weinhausen and C.E. Müller, N-Substituted Phenoxazine and Acridone Derivatives: Structure-Activity Relationships of Potent P2X4 Receptor Antagonists, J. Med. Chem., 55, 9576 (2012); https://doi.org/10.1021/jm300845v
  17. M.S. Tambe, A. Choudhari, D. Sarkar, J. Sangshetti, R. Patil and S.S. Gholap, Design, Synthesis and Biological Screening of Novel 1,3,4-Oxadiazoles as Antitubercular Agents, ChemistrySelect, 3, 13304 (2018); https://doi.org/10.1002/slct.201802227
  18. M.S. Tambe, S.S. Gholap, L. Nawale, D. Sarkar, J. Sangshetti and M. Damale, Design, Synthesis and Pharmacological Evaluation of Fluorinated Azoles as Anti-tubercular Agents, Arch. Pharm, 351, 1700294 (2018); https://doi.org/10.1002/ardp.201700294
  19. S.S. Gholap, M.S. Tambe, S. Chakraborty, R. Borkute, A. Choudhri, D. Sarkar, J.N. Sangshetti and R.B. Patil, Synthesis and Biological Screening of Fluorinated Analogues of 4-aminoquinoline Derivatives as Antitubercular Agents, Asian J. Org. Med. Chem., 3, 190 (2018); https://doi.org/10.14233/ajomc.2018.AJOMC-P158
  20. N. Muthukaman, S. Deshmukh, S. Tondlekar, M. Tambe, D. Pisal, N. Sarode, S. Mhatre, S. Chakraborti, D. Shah, V.M. Bhosale, A. Kulkarni, M.Y.A. Mahat, S.B. Jadhav, G.S. Gudi, N. Khairatkar-Joshi and L.A. Gharat, Discovery of 5-(2-chloro-4¢-(1H-imidazol-1-yl)-[1,1¢-biphenyl]-4-yl)-1H-tetrazole as Potent and Orally Efficacious S-Nitrosoglutathione Reductase (GSNOR) Inhibitors for the Potential Treatment of COPD, Bioorg. Med. Chem. Lett., 28, 3766 (2018); https://doi.org/10.1016/j.bmcl.2018.10.012
  21. N. Muthukaman, S. Deshmukh, M. Tambe, D. Pisal, S. Tondlekar, M. Shaikh, N. Sarode, V.G. Kattige, P. Sawant, M. Pisat, V. Karande, S. Honnegowda, A. Kulkarni, D. Behera, S.B. Jadhav, R.R. Sangana, G.S. Gudi, N. Khairatkar-Joshi and L.A. Gharat, Alleviating CYP and hERG Liabilities by Structure Optimization of Dihydrofuran-Fused Tricyclic Benzo[d]imidazole Series-Potent, Selective and Orally Efficacious Micro-somal Prostaglandin E Synthase-1 (mPGES-1) Inhibitors: Part-2, Bioorg. Med. Chem. Lett., 28, 1211 (2018); https://doi.org/10.1016/j.bmcl.2018.02.048
  22. N. Muthukaman, M. Tambe, S. Deshmukh, D. Pisal, S. Tondlekar, M. Shaikh, N. Sarode, V.G. Kattige, M. Pisat, P. Sawant, S. Honnegowda, V. Karande, A. Kulkarni, D. Behera, S.B. Jadhav, R.R. Sangana, G.S. Gudi, N. Khairatkar-Joshi and L.A. Gharat, Discovery of Furan and Dihydrofuran-Fused Tricyclic Benzo[d]imidazole Derivatives as Potent and Orally Efficacious Microsomal Prostaglandin E Synthase-1 (mPGES-1) inhibitors: Part-1, Bioorg. Med. Chem. Lett., 27, 5131 (2017); https://doi.org/10.1016/j.bmcl.2017.10.062
  23. N. Muthukaman, M. Tambe, M. Shaikh, D. Pisal, S. Deshmukh, N. Sarode, S. Tondlekar, L. Narayana, J.M. Gajera, V.G. Kattige, S. Honnegowda, V. Karande, A. Kulkarni, D. Behera, S.B. Jadhav, G.S. Gudi, N. Khairatkar-Joshi and L.A. Gharat, Tricyclic 4,4-Dimethyl-3,4-dihydrochromeno-[3,4-d]imidazole Derivatives as Microsomal Prostaglandin E2 Synthase-1 (mPGES-1) Inhibitors: SAR and in vivo Efficacy in Hyperalgesia Pain Model, Bioorg. Med. Chem. Lett., 27, 2594 (2017); https://doi.org/10.1016/j.bmcl.2017.03.068
  24. N. Muthukaman, S. Deshmukh, N. Sarode, S. Tondlekar, M. Tambe, D. Pisal, M. Shaikh, V.G. Kattige, S. Honnegowda, V. Karande, A. Kulkarni, S.B. Jadhav, M.Y.A. Mahat, G.S. Gudi, N. Khairatkar-Joshi and L.A. Gharat, Discovery of 2-((2-Chloro-6-fluorophenyl)amino)-N-(3-fluoro-5-(trifluoromethyl)phenyl)-1-methyl-7,8-dihydro-1H-[1,4]dioxino-[2¢,3¢:3,4]benzo[1,2-d]imidazole-5-carboxamide as Potent, Selective and Efficacious Microsomal Prostaglandin E2 Synthase-1 (mPGES-1) Inhibitor, Bioorg. Med. Chem. Lett., 26, 5977 (2016); https://doi.org/10.1016/j.bmcl.2016.10.079
  25. M.S. Tambe and S.S. Gholap, An Efficient Synthesis of 1,8-Dioxoocta-hydroxanthenes Promoted by Thiamine hydrochloride (VB1), Chem. Biol. Interact., 6, 344 (2016).
  26. S.S. Gholap, U.P. Deshmukh and M.S. Tambe, Synthesis and in vitro Antimicrobial Screening of 3-Cinnamoyl Coumarin and 3-[3-(1H-indol-2-yl)-3-aryl-propanoyl]-2H-chromen-2-ones, Iranian J. Catal., 3, 171 (2013).
  27. S.S. Gholap, V.D. Dhakane, S.N. Shelke, and M.S. Tambe, Green and Sustainable Approach to bis-(Indolyl)alkanes, Bull. Catal. Soc. India, 11, 50 (2012).
  28. S.S. Gholap, M.S. Tambe, V.L. Malawade and C.H. Gill, Transition Metal Free Michael Addition of Indole or Thiol under Heterogeneous Conditions, Int. J. Chem. Sci., 5, 2384 (2007).
  29. K. Takayama, C. Wang and G.S. Besra, Pathway to Synthesis and Processing of Mycolic Acids in Mycobacterium tuberculosis, Clin. Microbiol. Rev., 18, 81 (2005); https://doi.org/10.1128/CMR.18.1.81-101.2005
  30. P.B. Devi, S. Jogula, A.P. Reddy, S. Saxena, J.P. Sridevi, D. Sriram and P. Yogeeswari, Design of Novel Mycobacterium tuberculosis Pantothenate Synthetase Inhibitors: Virtual Screening, Synthesis and in vitro Biological Activities, Mol. Inform., 34, 147 (2015); https://doi.org/10.1002/minf.201400120
  31. H.L. Silvestre, T.L. Blundell, C. Abell and A. Ciulli, Integrated Bio-physical Approach to Fragment Screening and Validation for Fragment Based Lead Discovery, Proc. Natl. Acad. Sci. USA, 110, 12984 (2013); https://doi.org/10.1073/pnas.1304045110
  32. S. Wang and D. Eisenberg, Crystal Structures of a Pantothenate Synthetase from M. tuberculosis and its Complexes with Substrates and a Reaction Intermediate, Protein Sci., 12, 1097 (2003); https://doi.org/10.1110/ps.0241803
  33. O. Trott and A.J. Olson, AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimi-zation and Multithreading, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
  34. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng and T.E. Ferrin, UCSF Chimera-A visualization System for Exploratory Research and Analysis, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
  35. R.D. Kamble, R.J. Meshram, S.V. Hese, R.A. More, S.S. Kamble, R.N. Gacche and B.S. Dawane, Synthesis and in silico Investigation of Thiazoles Bearing Pyrazoles Derivatives as Anti-inflammatory Agents, Comput. Biol. Chem., 61, 86 (2016); https://doi.org/10.1016/j.compbiolchem.2016.01.007
  36. K. Stierand and M. Rarey, PoseView-Molecular Interaction Patterns at a Glance, J. Cheminform., 2(S1), 50 (2010); https://doi.org/10.1186/1758-2946-2-S1-P50
  37. S. Prasanth Kumar, P. Srinivasan, S.K. Patel, R. Kapopara and Y.T. Jasrai, in silico Development of Inhibitors against Pantothenate Synthetase of Mycobacterium tuberculosis, J. Adv. Bioinform. Appl. Res., 2, 142 (2011).
  38. S. Velaparthi, M. Brunsteiner, R. Uddin, B. Wan, S.G. Franzblau and P.A. Petukhov, 5-tert-Butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]-isoxazole-3-carboxamide Derivatives as Novel Potent Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase: Initiating a Quest for New Antitubercular Drugs, J. Med. Chem., 51, 1999 (2008); https://doi.org/10.1021/jm701372r

Most read articles by the same author(s)