Main Article Content

Abstract

In the present report, an expeditious green synthetic approach was developed for the synthesis of α-aminophosphonates 5(a-j) in good yields through one-pot three component reaction (Kabachnik-Fields reaction) in solvent-free conditions under microwave irradiation. The newly synthesized compounds were characterized by IR, NMR (1H, 13C and 31P), mass and C, H, N analysis. The synthesized compounds were screened for their anti-inflammatory activity using rat paw edema method. Most of the compounds from the series showed significant (p < 0.05) anti-inflammatory activity.

Keywords

Microwave irradiation Sulphadiazine α-Aminophosphonates Antimicrobial activity

Article Details

How to Cite
Sujatha, B., & Kamala, P. (2019). Microwave-Assisted Synthesis and Anti-inflammatory Activity Evaluation of &alpha;-Aminophosphonates. Asian Journal of Organic & Medicinal Chemistry, 4(1), 14–19. https://doi.org/10.14233/ajomc.2019.AJOMC-P164

References

  1. W. Xie, D.L. Robertson and D.L. Simmons, Mitogen-Inducible Prostaglandin G/H Synthase: A New Target for Nonsteroidal Antiinflam-matory Drugs, Drug Dev. Res., 25, 249 (1992); https://doi.org/10.1002/ddr.430250402.
  2. J.C. Craig and D.E. Pearson, Potential Antimalarials. 7. Tribromomethyl-quinolines and Positive Halogen Compounds, J. Med. Chem., 14, 1221 (1971); https://doi.org/10.1021/jm00294a022.
  3. N.M. Sukhova, M. Lidak, A. Zidermane, I.S. Pelevina and S.S. Voronia, N-Substituted Nitrofurilvinyl(butadienyl)-4-amino(Hydrazine) Quinolines-Synthesis, Antitumoral and Antimicrobial, Khim.- Farm. Zh., 23, 1226 (1989).
  4. H.V. Patel, K.V. Vyas and P.S. Fernandes, Synthesis of Substituted 6-(3¢,5¢-Dimethyl-1H-pyrazol-1¢-yl)quinolines and Evaluation of Their Biological Activities, Indian J. Chem., 29B, 836 (1990).
  5. F.R. Atherton, C.H. Hassall and R.W. Lambert, Synthesis and Structure-Activity Relationships of Antibacterial Phosphonopeptides Incorporating (1-Aminoethyl)Phosphonic Acid and (Aminomethyl)Phosphonic Acid, J. Med. Chem., 29, 29 (1986); https://doi.org/10.1021/jm00151a005.
  6. M.C. Allen, W. Fuhrer, B. Tuck, R. Wade and J.M. Wood, Renin Inhibitors. Synthesis of Transition-State Analog Inhibitors Containing Phosphorus Acid Derivatives at the Scissile Bond, J. Med. Chem., 32, 1652 (1989); https://doi.org/10.1021/jm00127a041.
  7. I.A. Natchev, Synthesis, Enzyme - Substrate Interaction, and Herbicidal Activity of Phosphoryl Analogues of Glycine, Liebigs Ann. Chem., 1988, 861 (1988); https://doi.org/10.1002/jlac.198819880908.
  8. P. Kafarski and B. Lejczak, Biological Activity of Aminophosphonic Acids, Phosphorus Sulfur Silicon Rel., 63, 193 (1991); https://doi.org/10.1080/10426509108029443.
  9. R.Y. Chen and L.J. Mao, Synthesis and Antitumor Activity of Novel a-Substituted Aminomethylphosphonates, Phosphorus Sulfur Silicon Rel., 89, 97 (1994); https://doi.org/10.1080/10426509408020438.
  10. L. Maier, Organic Phosphorus Compounds 91.1 Synthesis and Properties of 1-Amino-2-Arylethylphosphonic and-Phosphinic Acids as well as -Phosphine Oxides, Phosphorus Sulfur Silicon Rel., 53, 43 (1990); https://doi.org/10.1080/10426509008038012.
  11. K.A. Petov, V.A. Chauzov and T.S. Erkhina, Usp. Khim., 43, 2045 (1974).
  12. J. Zon, Asymmetric Addition of tris(Trimethylsilyl)phosphite to Chiral Aldimine, Pol. J. Chem., 55, 643 (1981).
  13. S. Laschat and H. Kunz, Carbohydrates as Chiral Templates: Stereo-selective Synthesis of (R)- and (S)-a-Aminophosphonic Acid Derivatives, Synthesis, 90 (1992); https://doi.org/10.1055/s-1992-34155.
  14. M.M. Kabachnik, T.N. Ternovskaya, E.V. Zobnina and I.P. Beletskaya, Reactions of Hydrophosphoryl Compounds with Schiff Bases in the Presence of CdI2, Russ. J. Org. Chem., 38, 480 (2002); https://doi.org/10.1023/A:1016578602100.
  15. M.M. Kabachnik, E.V. Zobnina and I.P. Beletskaya, Microwave-Assisted Reactions of Schiff Bases with Diethyl Phosphonate in the Presence of CdI2, Russ. J. Org. Chem., 41, 505 (2005); https://doi.org/10.1007/s11178-005-0194-y.
  16. C. Qian and T. Huang, One-Pot Synthesis of a-Amino Phosphonates from Aldehydes Using Lanthanide Triflate as a Catalyst, J. Org. Chem., 63, 4125 (1998); https://doi.org/10.1021/jo971242t.
  17. B.C. Ranu, A. Hajra and U. Jana, General Procedure for the Synthesis of a-Amino Phosphonates from Aldehydes and Ketones using Indium(III) Chloride as a Catalyst, Org. Lett., 1, 1141 (1999); https://doi.org/10.1021/ol990079g.
  18. J.S. Yadav, B.V.S. Reddy, S. Raj, K.B. Reddy and A.R. Prasad, Zr4+-Catalyzed Efficient Synthesis of a-Aminophosphonates, Synthesis, 2277 (2001); https://doi.org/10.1055/s-2001-18444.
  19. R. Ghosh, S. Maiti, A. Chakraborty and D. Maiti, In(OTf)3 Catalyzed Simple One-Pot Synthesis of a-Amino Phosphonates, J. Mol. Chem., 210, 53 (2004); https://doi.org/10.1016/j.molcata.2003.09.020.
  20. P.P. Sun, Z.X. Hu and Z.H. Huang, Gallium Triiodide Catalyzed Organic Reaction: A Convenient Synthesis of a-Amino Phosphonates, Synth. Commun., 34, 4293 (2004); https://doi.org/10.1081/SCC-200039361.
  21. Z.P. Zhan and J.P. Li, Bismuth(III) Chloride-Catalyzed Three-Component Coupling: Synthesis of a-Amino Phosphonates, Synth. Commun., 35, 2501 (2005); https://doi.org/10.1080/00397910500212692.
  22. A.R. Jagdale, A.S. Paraskar and A. Sudalai, Cobalt(II) Chloride Hexahydrate-Diisopropylamine Catalyzed Mild and Chemoselective Reduction of Carboxylic Esters with Sodium Borohydride, ARKIVOC, 660 (2009); https://doi.org/10.1055/s-0028-1083353.
  23. Ambica, S. Kumar, S.C. Taneja, M.S. Hundal and K.K. Kapoor, One-Pot Synthesis of a-Aminophosphonates Catalyzed by Antimony Trichloride Adsorbed on Alumina, Tetrahedron Lett., 49, 2208 (2008); https://doi.org/10.1016/j.tetlet.2008.02.047.
  24. T. Akiyama, M. Matsuda and K. Fuchibe, Montmorillonite K10 Catalyzed Nucleophilic Addition Reaction to Aldimines in Water, Synthesis, 206 (2005); https://doi.org/10.1055/s-2005-872162.
  25. J.S. Yadav, B.V.S. Reddy and P. Sreedhar, An Eco-Friendly Approach for the Synthesis of ?-Aminophosphonates using Ionic Liquids, Green Chem., 4, 436 (2002); https://doi.org/10.1039/B203934F.
  26. M.R. Saidi and N. Azizi, A New Protocol for a One-pot Synthesis of a-Amino Phosphonates by Reaction of Imines Prepared in situ with Trialkylphosphites, Synlett, 1347 (2002); https://doi.org/10.1055/s-2002-32957.
  27. N. Azizi and M.R. Saidi, Synthesis of Tertiary a-Amino Phosphonate by One-Pot Three-Component Coupling Mediated by LPDE, Tetrahedron, 59, 5329 (2003); https://doi.org/10.1016/S0040-4020(03)00759-2.
  28. T. Akiyama, M. Sanada and K. Fuchibe, Brønsted Acid-Mediated Synthesis of a-Amino Phosphonates under Solvent-Free Conditions, Synlett, 1463 (2003); https://doi.org/10.1055/s-2003-40858.
  29. N. Azizi, F. Rajabi and M.R. Saidi, A Mild and Highly Efficient Protocol for the One-Pot Synthesis of Primary a-Amino Phosphonates under Solvent-Free Conditions, Tetrahedron Lett., 45, 9233 (2004); https://doi.org/10.1016/j.tetlet.2004.10.092.
  30. H. Firouzabadi, N. Iranpoor and S. Sobhani, Metal Triflate-Catalyzed One-Pot Synthesis of a-Aminophosphonates from Carbonyl Compounds in the Absence of Solvent, Synthesis, 2692 (2004); https://doi.org/10.1055/s-2004-831251.
  31. A. Elmakssoudi, M. Zahouily, A. Mezdar, A. Rayadh and S. Sebti, Na2CaP2O7 a New Catalyst for the Synthesis of a-Amino Phosphonates under Solvent-Free Conditions at Room Temperature, C. R. Chim., 8, 1954 (2005); https://doi.org/10.1016/j.crci.2005.05.006.
  32. S. Bhagat and A.K. Chakraborti, Zirconium(IV) Compounds as Efficient Catalysts for Synthesis of a-Aminophosphonates, J. Org. Chem., 73, 6029 (2008); https://doi.org/10.1021/jo8009006.
  33. B. Kaboudin and E. Jafari, Hydrophosphorylation of Imines Catalyzed by Tosyl Chloride for the Synthesis of a-Aminophosphonates, Synlett, 1837 (2008); https://doi.org/10.1055/s-2008-1078509.
  34. J.S. Yadav, B.V. Subba Reddy and C. Madan, Montmorillonite Clay-Catalyzed One-Pot Synthesis of a-Amino Phosphonates, Synlett, 1131 (2001); https://doi.org/10.1055/s-2001-15162.
  35. B. Kaboudin and R. Nazari, Microwave-Assisted Synthesis of 1-Amino-alkyl Phosphonates under Solvent-Free Conditions, Tetrahedron Lett., 42, 8211 (2002); https://doi.org/10.1016/S0040-4039(01)01627-6.
  36. A.K. Bhattacharya and K.C. Rana, Amberlite-IR 120 Catalyzed Three-Component Synthesis of a-Amino Phosphonates in One-Pot, Tetrahedron Lett., 49, 2598 (2008); https://doi.org/10.1016/j.tetlet.2008.02.102.
  37. S. Pericherla, J. Mareddy, G. Rani D. P., P.V. Gollapudi and S. Pal, Chemical Modifications of Nimesulide, J. Braz. Chem. Soc., 18, 384 (2007); https://doi.org/10.1590/S0103-50532007000200021.
  38. K. Satish, M.V.P.S. Vishnuvardhan, V.L. Nayak, G. Srihari, M. Subrahamanyam, T.P. Rao, S. Ramakrishna, K. Ravikumar, B. Sridhar and M.M. Murthy, Cytotoxic Diterpenoid Quinonemethides from the Roots of Pygmacopremna herbacea, Bioorg. Med. Chem. Lett., 21, 4581 (2011); https://doi.org/10.1016/j.bmcl.2011.05.109.
  39. C.A. Winter, E.A. Risley and G.W. Nuss, Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs, Proc. Soc. Exp. Biol. Med., 111, 544 (1962); https://doi.org/10.3181/00379727-111-27849.