Main Article Content

Abstract

Microwave assisted easy, efficient, and environment friendly process has been devised for the synthesis of phosphonates within minutes via microwave-assisted Michaelis-Arbuzov reaction. The desired products were obtained in excellent yields and in high purity under solvent-free and catalyst-free conditions. The structure of all the synthesized compounds was confirmed by spectral and CHN analysis. in vitro Antibacterial and antifungal activity of these compounds was also analyzed. Majority of the title compounds showed good inhibition towards bacteria and fungi.

Keywords

Microwave Phosphonates Michaelis-Arbuzov reaction Antibacterial and Antifungal activities

Article Details

How to Cite
Sujatha, B., Subramanyam, C., & Prasada Rao, K. (2019). Microwave Mediated Michaelis-Arbuzov Reaction to Synthesize Bioactive Phenylphosphonate Derivatives Under Solvent Free Condition. Asian Journal of Organic & Medicinal Chemistry, 4(1), 1–6. https://doi.org/10.14233/ajomc.2019.AJOMC-P162

References

  1. R. Engel, Handbook of Organophosphorus Chemistry, Marcel Dekker: New York (1992).
  2. P. Savignac and B. Iorga, Modern Phosphonate Chemistry, CRC Press: Boca Raton: FL (2003).
  3. J. Svara, N. Weferling and T. Hofmann, Phosphorus Compounds, Organic, In: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH: Weinheim (2008).
  4. I. Mori, R. Fonne-Pfister, S. Matsunaga, S. Tada, Y. Kimura, G. Iwasaki, J. Mano, M. Hatano, T. Nakano, S. Koizumi, A. Scheidegger, K. Hayakawa and D. Ohta, A Novel Class of Herbicides (Specific Inhibitors of Imidazole-glycerol Phosphate Dehydratase, Plant Physiol., 107, 719 (1995); https://doi.org/10.1104/pp.107.3.719.
  5. F.B. Abeles, P.W. Morgan and M.E. Saltveit, Ethylene in Plant Biology, Academy Press, Inc.: California, edn 2, Chap. 9 (1992).
  6. H.A. Hasan, Mode of Action of Pesticides on Aflatoxin Biosynthesis and Oxidase System Activity, Microbiol. Res., 154, 95 (1999); https://doi.org/10.1016/S0944-5013(99)80041-X.
  7. V. Deluchat, S. Lacour, B. Serpaud and J.C. Bollinger, Washing Powders and the Environment: Has TAED Any Influence on the Complexing Behaviour Of Phosphonic Acids?, Water Res., 36, 4301 (2002); https://doi.org/10.1016/S0043-1354(02)00160-4.
  8. L. Horner, H. Hoffmann, W. Klink, H. Ertel and V.G. Toscano, Phosphor-organische Verbindungen, XXXV. PO-aktivierte Verbindungen als Olefinierungsreagentien, Chem. Ber., 95, 581 (1962); https://doi.org/10.1002/cber.19620950302.
  9. G.S. Prasad, M. Manjunath, K.R.K. Reddy, O.V.S. Reddy and C.S. Reddy, Synthesis and Antibacterial Activity of New Aryl/Alkyl Phosphonates via Michaelis-Arbuzov Rearrangement, Arkivoc, 128 (2006); https://doi.org/10.3998/ark.5550190.0007.g14.
  10. E.D. Clercq, A. Holi, I. Rosenberg, T. Sakuma, J. Balzarini and P.C. Maudgal, A Novel Selective Broad-Spectrum Anti-DNA Virus Agent, Nature, 323, 464 (1986); https://doi.org/10.1038/323464a0.
  11. M. Valerianova, I. Votruba, A. Holy, V. Mandys and B. Otova, Antitumour Activity of N-6-Substituted PMEDAP Derivatives Against T-cell Lymphoma, Anticancer Res., 21, 2057 (2001).
  12. H. Reiser, J. Wang, L. Chong, W.J. Watkins, A. Ray, R. Shibata, G. Birkus, T. Cihlar, S. Wu, B. Li, X. Liu, I.N. Henne, G.H.I. Wolfgang, M. Desai, G.R. Rhodes, A. Fridland, W.A. Lee, W. Plunkett, D. Vail, D.H. Thamm, R. Jeraj and D.B. Tumas, GS-9219-A Novel Acyclic Nucleotide Analogue with Potent Antineoplastic Activity in Dogs with Spontaneous Non-Hodgkin’s Lymphoma, Clin. Cancer Res., 14, 2824 (2008); https://doi.org/10.1158/1078-0432.CCR-07-2061.
  13. S.M.A. Kedrowski and D.A. Dougherty, A Room-Temperature Alter-native to the Arbuzov Reaction: the Reductive Deoxygenation of Acyl Phosphonates, Org. Lett., 12, 3990 (2010); https://doi.org/10.1021/ol1015493.
  14. B.A. Arbuzow, Michaelis-Arbusow- und Perkow-Reaktionen, Pure Appl. Chem., 9, 307 (1964); https://doi.org/10.1351/pac196409020307.
  15. A.K. Bhattacharya and G. Thyagarajan, Michaelis-Arbuzov Rearrange-ment, Chem. Rev., 81, 415 (1981); https://doi.org/10.1021/cr00044a004.
  16. A. Michaelis and R. Kaehne, Ueber das Verhalten der Jodalkyle gegen die sogen. Phosphorigsäureester oder O-Phosphine, Chem. Ber., 31, 1048 (1898); https://doi.org/10.1002/cber.189803101190.
  17. P. Tavs, Reaktion von Arylhalogeniden mit Trialkylphosphiten und Benzolphosphonigsäure-dialkylestern zu aromatischen Phosphonsäure-estern und Phosphinsäureestern unter Nickelsalzkatalyse, Chem. Ber., 103, 2428 (1970); https://doi.org/10.1002/cber.19701030815.
  18. G. Axelrad, S. Laosooksathit and R. Engel, Reactions of Copper(I) Halide Complexes of Trivalent Phosphorus with Vinylic Halides, J. Org. Chem., 46, 5200 (1981); https://doi.org/10.1021/jo00338a028.
  19. T.M. Balthazor, J.A. Miles and B.R. Stults, Synthesis and Molecular Structure of 1,3-Dihydro-1-hydroxy-3-methyl-1,2,3-benziodoxaphosp-hole 3-oxide, J. Org. Chem., 43, 4538 (1978); https://doi.org/10.1021/jo00417a037.
  20. T.M. Balthazor, Phosphindolin-3-one. A Useful Intermediate for Phosphindole Synthesis, J. Org. Chem., 45, 2519 (1980); https://doi.org/10.1021/jo01300a057.
  21. D. Gelman, L. Jiang and S.L. Buchwald, Copper-Catalyzed C-P Bond Construction via Direct Coupling of Secondary Phosphines and Phosphites with Aryl and Vinyl Halides, Org. Lett., 5, 2315 (2003); https://doi.org/10.1021/ol0346640.
  22. P. Lidstrcom and J.P. Tierney, Microwave Assisted Organic Synthesis, Blackwell Publishing: Oxford (2005).
  23. M. Larhed and K. Olofsson, Microwave Methods in Organic Synthesis, In: Topics in Current Chemistry, Springer: Berlin, Series Volume: 266 (2006).
  24. D. Dallinger and C. Kappe, Microwave-Assisted Synthesis in Water as Solvent, Chem. Rev., 107, 2563 (2007); https://doi.org/10.1021/cr0509410.
  25. C.O. Kappe, D. Dallinger and S. Murphree, Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols, Wiley-VCH: Weinheim (2009).
  26. G. Keglevich, A. Grun, A. Bolcskei, L. Drahos, M. Kraszni and G.T. Balogh, Synthesis and Proton Dissociation Properties of Arylphospho-nates: A Microwave-Assisted Catalytic Arbuzov Reaction with Aryl Bromides, Heteroatom Chem., 23, 574 (2012); https://doi.org/10.1002/hc.21053.
  27. S.U. Kazmi, S.N. Ali and S.A. Jamal, J. Pharm. Sci., 4, 113 (1991);
  28. Atta-ur-Rehman, M. Iqbal Choudhary and W.J. Thomsen, Bioassay Techniques for Drug Development, Harwood Academic Publishers: Amsterdam (2001).
  29. S.Q. Song, L.G. Zhou, D. Li, D. Tang, J.Q. Li and W.B. Jiang, Antifungal Activity of Five Plants from Xinjiang, Nat. Prod. Res. Dev., 16, 157 (2004).