Main Article Content

Abstract

In this paper, we report the synthesis of a highly photocatalytic titanium dioxide nanoparticles bonded with azobenzene and cotton by simple sol-gel method. The synthesized azobenzene based titania nanoparticles coated cotton fibers were characterized using UV-visible and SEM and reported their antimicrobial activity. It was observed that the presence of titanium dioxide bonded with azobenzene effectively prevents both the cotton fibers from getting contaminated.

Keywords

Azobenzene Nanopatarticles Band gap Photocatalytic Antimicrobial activity

Article Details

How to Cite
Sharma, M., & Tomar, S. (2019). Synthesis and Antimicrobial Activity of Azobenzene Based Titania Nanoparticles Coated Cotton Fibers. Asian Journal of Organic & Medicinal Chemistry, 4(2), 51–54. https://doi.org/10.14233/ajomc.2019.AJOMC-P144

References

  1. S. Shahidi, A. Rashidi, M. Ghoranneviss, A. Anvari, M.K. Rahimi, M.B. Moghaddam and J. Wiener, Investigation of Metal Absorption and Antibacterial Activity on Cotton Fabric Modified by Low Temperature Plasma, Cellulose, 17, 627 (2010); https://doi.org/10.1007/s10570-010-9400-3.
  2. O. Bshena, T.D.J. Heunis, L.M. Dicks and B. Klumperman, Antimicrobial Fibers: Therapeutic Possibilities and Recent Advances, Future Med. Chem., 3, 1821 (2011); https://doi.org/10.4155/fmc.11.131.
  3. J.C. Colmenares, R. Luque, J.M. Campelo, R.F. Colmenares Quintero, Z. Karpiñski and A.A. Romero, Materials, 2, 2228 (2009); https://doi.org/10.3390/ma2042228.
  4. J.C. Colmenares and R. Luque, Heterogeneous Photocatalytic Nanomaterials: Prospects and Challenges in Selective Transformations of Biomass-Derived Compounds, Chem. Soc. Rev., 43, 765 (2014); https://doi.org/10.1039/c3cs60262a.
  5. R. Jantas and K. Górna, Antibacterial Finishing of Cotton Fabrics, Fibres Textiles, 14, 55 (2006).
  6. W. Ye, J.H. Xin, P. Li, K.-L.D. Lee and T.-L. Kwong, Durable Anti-bacterial Finish on Cotton Fabric by Using Chitosan Based Polymeric CoreShell Particles, J. Appl. Polym. Sci., 102, 1787 (2006); https://doi.org/10.1002/app.24463.
  7. H.M.D. Bandara and S.C. Burdette, Chem. Soc. Rev., 41, 1809 (2012); https://doi.org/10.1039/C1CS15179G.
  8. J. García-Amorós and D. Velasco, Recent Advances Towards Azobenzene-Based Light-Driven Real-Time Information-Transmitting Materials, Beilstein J. Org. Chem., 8, 1003 (2012); https://doi.org/10.3762/bjoc.8.113.
  9. M. Saphiannikova, V. Toshchevikov and J. Ilnytskyi, Photoinduced Deformations in Azobenzene Polymer Films, Nonlinear Optics Quantum Optics, 41, 27 (2010).
  10. V.A. Azov, J. Cordes, D. Schlüter, T. Dülcks, M. Böckmann and N.L. Doltsinis, Light-Controlled Macrocyclization of Tetrathiafulvalene with Azobenzene: Designing an Optoelectronic Molecular Switch, J. Org. Chem., 79, 11714 (2014); https://doi.org/10.1021/jo502469z.
  11. S. Mahshid, M. Askari and M.S. Ghamsari, Synthesis of TiO2 Nano-particles by Hydrolysis and Peptization of Titanium Isopropoxide Solution, J. Mater. Process. Technol., 189, 296 (2007); https://doi.org/10.1016/j.jmatprotec.2007.01.040.