Main Article Content

Abstract

In the present study, two series of tetrazole containing maleamic (5a-h) and phthaleamic acid (5i-l) derivatives were synthesized and evaluated for their antimicrobial and β-lactamase enzyme inhibition activities. The synthesized compounds were characterized by IR, 1H NMR and 13C NMR spectral techniques. Among the screened compounds, the compound 5c, 5d, 5e, 5f, 5g and 5h have shown good antimicrobial activity. We further performed exploratory β-lactamase enzyme inhibitors studies on β-lactamase.

Keywords

Biological activity Antimicrobial resistance Tetrazoles Maleamic acids Phthaleamic acids β-Lactamase enzyme inhibitors

Article Details

How to Cite
P. Sathe, B., S. Oman, H., N.M.A. Rehman, N., P. Dixit, P., S. Kharat, A., & P. Haval, K. (2019). Synthesis, Antimicrobial and β-Lactamase Enzyme Inhibition Activity of Some New Tetrazole Containing Maleamic and Phthaleamic Acid Derivatives. Asian Journal of Organic & Medicinal Chemistry, 4(3), 166–173. https://doi.org/10.14233/ajomc.2019.AJOMC-P208

References

  1. M. Jansen, A. Wahida, S. Latz, A. Krüttgen, H. Häfner, E.M. Buhl, K. Ritter and H.P. Horz, Enhanced Antibacterial Effect of the Novel T4-Like Bacteriophage KARL-1 in Combination with Antibiotics Against Multi-Drug Resistant Acinetobacter baumannii, Sci. Rep., 8, 14140 (2018); https://doi.org/10.1038/s41598-018-32344-y.
  2. T. Deguchi, S. Ito, M. Yasuda, Y. Sato, C. Uchida, M. Sawamura, K. Manda, M. Takanashi and H. Kiyota, Surveillance of the Prevalence of Macrolide and/or Fluoroquinolone Resistance-Associated Mutations in Mycoplasma genitalium in Japan, J. Infect. Chemother., 24, 861 (2018); https://doi.org/10.1016/j.jiac.2018.08.009.
  3. D.A.E. Pitaloka and E.Y. Sukandar, in vitro Study of Ursolic Acid Combination First-Line Antituberculosis Drugs against Drug-Sensitive and Drug-Resistant Strains of Mycobacterium tuberculosis, Asian J. Pharm. Clin. Res., 10, 216 (2017); https://doi.org/10.22159/ajpcr.2017.v10i4.16582.
  4. A.C. Fluit, J.T. Van der Bruggen, F.M. Aarestrup, J. Verhoef and W.T. Jansen, Priorities for Antibiotic Resistance Surveillance in Europe, Clin. Microbiol. Infect., 12, 410 (2006); https://doi.org/10.1111/j.1469-0691.2006.01406.x.
  5. L.A. Mitscher, S.P. Pillai, E.J. Gentry and D.M. Shankel, Multiple Drug Resistance, Med. Res. Rev., 19, 477 (1999); https://doi.org/10.1002/(SICI)1098-1128(199911)19:6<477::AID-MED2>3.0.CO;2-W.
  6. K. Bush, b-Lactamase Inhibitors from Laboratory to Clinic, Clin. Microbiol. Rev., 1, 109 (1988); https://doi.org/10.1128/CMR.1.1.109.
  7. A. Mohammadi, H. Ghafoori, B. Ghalami-Choobar and R.J. Rohinejad, Synthesis, Solvatochromic Properties and Biological Evaluation of Some Novel Azo-Hydrazone Tautomeric Dyes, J. Mol. Liq., 198, 44 (2014); https://doi.org/10.1016/j.molliq.2014.07.005.
  8. S. Koppireddi, J.R. Komsani, S. Avula, S. Pombala, S. Vasamsetti, S. Kotamraju and R. Yadla, Novel 2-(2,4-Dioxo-1,3-thiazolidin-5-yl)-acetamides as Antioxidant and/or Anti-inflammatory Compounds, Eur. J. Med. Chem., 66, 305 (2013); https://doi.org/10.1016/j.ejmech.2013.06.005.
  9. R. Romagnoli, P.G. Baraldi, M.K. Salvador, D. Preti, M.A. Tabrizi, A. Brancale, X. Fu, H.J. Li, S.Z. Zhang, E. Hamel, R. Bortolozzi and G. Basso, Synthesis and Evaluation of 1,5-Disubstituted Tetrazoles as Rigid Analogues of Combretastatin A-4 with Potent Antiproliferative and Antitumor Activity, J. Med. Chem., 55, 475 (2012); https://doi.org/10.1021/jm2013979.
  10. V.D. Kancheva, P.V. Boranova, J.T. Nechev and I. Manolovili, Structure-Activity Relationships of New 4-Hydroxy Bis-Coumarins as Radical Scavengers and Chain-Breaking Antioxidants, Biochimie, 92, 1138 (2010); https://doi.org/10.1016/j.biochi.2010.02.033.
  11. M. Valko, D. Leibfritz, J. Moncol, M.T. Cronin, M. Mazur and J. Telser, Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease, Int. J. Biochem. Cell Biol., 39, 44 (2007); https://doi.org/10.1016/j.biocel.2006.07.001.
  12. G. Damia and M. Borggini, Improving the Selectivity of Cancer Treat-ments by Interfering with Cell Response Pathways, Eur. J. Cancer, 40, 2550 (2004); https://doi.org/10.1016/j.ejca.2004.07.020.
  13. C.Y. Hung and G.C. Yen, Antioxidant Activity of Phenolic Compounds Isolated from Mesona procumbens Hemsl., J. Agric. Food Chem., 50, 2993 (2002); https://doi.org/10.1021/jf011454y. https://doi.org/10.1021/jf010919h.
  14. R. Langer, Drugs on Target, Science, 293, 58 (2001); https://doi.org/10.1126/science.1063273.
  15. V.V. Zarubaev, E.L. Golod, P.M. Anfimov, A.A. Shtro, V.V. Saraev, A.S. Gavrilov, A.V. Logvinov and O.I. Kiselev, Synthesis and Anti-Viral Activity of Azolo-adamantanes Against Influenza A Virus, Bioorg. Med. Chem., 18, 839 (2010); https://doi.org/10.1016/j.bmc.2009.11.047.
  16. K. Raman, S.S. Parmar and S.P. Singh, Synthesis of 1-(5-Phenyl-2H-tetrazol-2-ylacetyl)-4-substituted thiosemicarbazides as Possible Anti-inflammatory Agents, J. Heterocycl. Chem., 17, 1137 (1980); https://doi.org/10.1002/jhet.5570170565.
  17. E.A. Popova, A.V. Protas and R.E. Trifonov, Tetrazole Derivatives as Promising Anticancer Agents, Anti-cancer Agents Med. Chem., 17, 1856 (2017); https://doi.org/10.2174/1871520617666170327143148.
  18. M.A. Malik, M.Y. Wani, S.A. Al-Thabaiti and R.A. Shiekh, Tetrazoles as Carboxylic Acid Isosteres: Chemistry and Biology, J. Incl. Phenom. Macrocycl. Chem., 78, 15 (2014); https://doi.org/10.1007/s10847-013-0334-x.
  19. B.C. Dixit, H. Patel and D.J. Desai, Synthesis and Application of New Mordent and Disperse Azo Dyes Based on 2,4-Dihydroxybenzophenone, J. Serb. Chem. Soc., 72, 119 (2007); https://doi.org/10.2298/JSC0702119D.
  20. G.I. Koldobskii and V.A. Ostrovskii, Tetrazoles, Usp. Khim., 63, 847 (1994); https://doi.org/10.1070/RC1994v063n10ABEH000119.
  21. A.W. Ireland, T.A. Gobillot, T. Gupta, S.P. Seuin, M. Liang, L. Resnick, M.T. Goldberg, A. Manos-Turvey, J.M. Pipas, P. Wipf and J.L. Brodskya, Synthesis and Structure-Activity Relationships of Small Molecule Inhibitors of the Simian Virus 40 T Antigen Oncoprotein, An Anti-Polyomaviral Target, Bioorg. Med. Chem., 22, 6490 (2014); https://doi.org/10.1016/j.bmc.2014.09.019.
  22. X.Y. Ye, D. Yoon, S.Y. Chen, A. Nayeem, R. Golla, R. Seethala, M. Wang, R. Harper, T. Harper, B.G. Sleczka, A. Apedo, Y.-X. Li, B. He, M. Kirby, D.A. Gordon and J.A. Robl, Synthesis and Structure-Activity Relationship of 2-Adamantylmethyl Tetrazoles as Potent and Selective Inhibitors of Human 11b-Hydroxysteroid Dehydrogenase Type 1 (11b-HSD1), Bioorg. Med. Chem. Lett., 24, 654 (2014); https://doi.org/10.1016/j.bmcl.2013.11.066.
  23. H. Gao and J.M. Shreeve, Azole-Based Energetic Salts, Chem. Rev., 111, 7377 (2011); https://doi.org/10.1021/cr200039c.
  24. D.J. Moderhack, Ring Transformations in Tetrazole Chemistry, Prakt. Chem., 340, 687 (1988); https://doi.org/10.1002/prac.19983400802.
  25. P.F. Lamie, J.N. Philoppes, A.A. Azouz and N.M. Safwat, Novel Tetrazole and Cyanamide Derivatives as Inhibitors of Cyclooxygenase-2 Enzyme: Design, Synthesis, Anti-Inflammatory Evaluation, Ulcero-genic Liability And Docking Study, J. Enzyme Inhib. Med. Chem., 32, 805 (2017); https://doi.org/10.1080/14756366.2017.1326110.
  26. V.A. Ostrovskii, R.E. Trifonov and E.A. Popova, Medicinal Chemistry of Tetrazoles, Russ. Chem. Bull. Int. Ed., 61, 768 (2012); https://doi.org/10.1007/s11172-012-0108-4.
  27. H. Tang, Y. Yao, L. Wang, H. Yu, Y. Ren, G. Wu and P. Xu, Genomic Analysis of Pseudomonas putida: Genes in a Genome Island are Crucial for Nicotine Degradation, Sci. Rep., 2, 377 (2012); https://doi.org/10.1038/srep00377.
  28. J. Rodrigues, C. Abramjuk, L. Vásquez, N. Gamboa, J. Domínguez, B. Nitzsche, M. Höpfner, R. Georgieva, H. Bäumler, C. Stephan, K. Jung, M. Lein and A. Rabien, New 4-Maleamic Acid and 4-Maleamide Peptidyl Chalcones as Potential Multitarget Drugs for Human Prostate Cancer, Pharm. Res., 28, 907 (2011); https://doi.org/10.1007/s11095-010-0347-8.
  29. S.Z. Nosrati and A.K. Khub, Alteration in Fruit Setting and Quality of Sweet, Sour and Duke Cherries Using N-Phenyl-Phthalamic Acid, Middle-East J. Sci. Res., 13, 1028 (2013).
  30. Y.D. Reddy, Y.B. Kumari and P.K. Dubey, Synthesis of a Novel Water Soluble Phthalimide Derivative of Acetaminophen as Potential Analgesic and Antipyretic Agent, Indian J. Chem., 52B, 691 (2013); http://hdl.handle.net/123456789/18034.
  31. W. Pluempanupat, S. Adisakwattana, S. Yibchok-Anun and W. Chavasiri, Synthesis of N-Phenylphthalimide Derivatives as a-Glucosidase Inhibitors, Arch. Pharm. Res., 30, 1501 (2007); https://doi.org/10.1007/BF02977317.
  32. I.J. Holb, P.F. De Jong and B. Heijne, Efficacy and Phytotoxicity of Lime Sulphur in Organic Apple Production, Ann. Appl. Biol., 142, 225 (2003); https://doi.org/10.1111/j.1744-7348.2003.tb00245.x.
  33. K. Bush and P.A. Bradford, b-Lactams and b-Lactamase Inhibitors: An Overview, Cold Spring Harbor Perspect. Med., 6, a025247 (2016); https://doi.org/10.1101/cshperspect.a025247.
  34. K. Bush and P.A. Bradford, Interplay Between b-Lactamases and New b-Lactamase Inhibitors, Nat. Rev. Microbiol., 17, 295 (2019); https://doi.org/10.1038/s41579-019-0159-8.
  35. K. Bush, Past and Present Perspectives on b-Lactamases, Antimicrob Agents Chemother, 62, 1 (2018); https://doi.org/10.1128/AAC.01076-18.
  36. J.D. Docquier and S. Mangani, An Update on b-Lactamase Inhibitor Discovery and Development, Drug Resist Updat., 36, 13 (2018); https://doi.org/10.1016/j.drup.2017.11.002.
  37. K.H.M.E. Tehrani and N.I. Martin, b-Lactam/b-Lactamase Inhibitor Combinations: An Update, Med. Chem. Comm., 17, 1439 (2018); https://doi.org/10.1039/c8md00342d.
  38. B. Veeraraghavan, A.K. Pragasam, Y.D. Bakthavatchalam, S. Anandan, V. Ramasubramanian, S. Swaminathan, R. Gopalakrishnan, R. Soman, O.C. Abraham, V.C. Ohri and K. Walia, Newer b-Lactam/b-Lactamase Inhibitor for Multidrug-Resistant Gram-Negative Infections: Challenges, Implications and Surveillance Strategy for India, Indian J. Med. Microbiol., 36, 334 (2018); https://doi.org/10.4103/ijmm.IJMM_18_326.
  39. M.B. Muluk, S.T. Dhumal, N.N.M.A. Rehman, P.P. Dixit, K.R. Kharat and K.P. Haval, Synthesis, Anticancer and Antimicrobial Evaluation of New (E)-N¢-Benzylidene-2-(2-ethylpyridin-4-yl)-4-methylthiazole-5-carbohydrazides, Chemistry Select, 4, 8993 (2019); https://doi.org/10.1002/slct.201902030.
  40. P.S. Phatak, R.D. Bakale, S.T. Dhumal, L.K. Dahiwade, P.B. Choudhari, V. Siva Krishna, D. Sriram and K.P. Haval, Synthesis, Antitubercular Evaluation and Molecular Docking Studies of Phthalimide Bearing 1,2,3-Triazoles, Synth. Commun. 49, 2017 (2019); https://doi.org/10.1080/00397911.2019.1614630.
  41. R.S. Kulkarni, N.B. Haval, J.A. Kulkarni, P.P. Dixit and K.P. Haval, Synthesis, Characterization and Biological Evaluation of Substituted 2-Phenoxy-Nicotinaldehydes As a-Amylase Inhibitor, Eur. Chem. Bull. 8, 26 (2019); https://doi.org/10.17628/ecb.2019.8.26-30.
  42. S.G. Vedpatak, R.G. Momle, G.K. Kakade and V.S. Ingle, An improved and Convenient Route for the Dynthesis of 5-Methyl-1H-tetrazol-1-yl Substituted Benzenamines, World J. Pharm. Res., 5, 1049 (2016).
  43. P.S. Deore, K.P. Haval, S.R. Gadre and N.P. Argade, A Concise Account of the Chemistry of Valuable Alkyl(methyl)maleic Anhydrides, Synthesis, 46, 2683 (2014); https://doi.org/10.1055/s-0034-1378665.
  44. K.P. Haval, S.B. Mhaske and N.P. Argade, Cyanuric Chloride: Decent Dehydrating Agent for an Exclusive and Efficient Synthesis of Kinetically Controlled Isomaleimides, Tetrahedron, 62, 937 (2006); https://doi.org/10.1016/j.tet.2005.10.027.
  45. K.P. Haval and N.P. Argade, Haval–Argade Contrathermodynamic Rearrangement of Alkylidenesuccinimides to Alkylmaleimides via The Corresponding Isoimides: A General Approach to Alkyl and Dialkyl Substituted Maleimides, Tetrahedron, 62, 3557 (2006); https://doi.org/10.1016/j.tet.2005.10.027.
  46. M. Asif, Biological Potentials of Substituted Tetrazole Compounds, Pharm. Methods, 5, 39 (2014); https://doi.org/10.5530/phm.2014.2.1.
  47. A.P. Orville, X. Zhang, D.A. Nichols, K. De Frees, P. Jaishankar, R. Bonnet, J. Adams, L.N. Shaw, A.R. Renslo and Y. Chen, Antibacterial Spectrum of a Tetrazole-Based Reversible Inhibitor of Serine b-Lactamases, Antimicrob. Agents Chemother., 62, 1 (2018); https://doi.org/10.1128/AAC.02563-17.
  48. P.S. Phatak, B.P. Sathe, S.T. Dhumal, N.N.M.A. Rehman, P.P. Dixit, V.M. Khedkar and K.P. Haval, Synthesis, Antimicrobial Evaluation, and Docking Studies of Substituted Acetylphenoxymethyl-triazolyl-N-phenylacetamides, J. Heterocycl. Chem., 56, 1928 (2019); https://doi.org/10.1002/jhet.3568.
  49. Mancini, A. Sicurelli, G. Guella, T. Turk, P. Macek and K. Sepcic, Synthesis and Bioactivity of Linear Oligomers Related to Polymeric Alkylpyridinium Metabolites from the Mediterranean Sponge Reniera sarai, Org. Biomol. Chem., 2, 1368 (2004); https://doi.org/10.1039/B400782D.