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I N T R O D U C T I O N

The increase in various infectious microbial diseases has
developed a major issue of global health. This situation becomes
more complex by the evolution of various microbial strains resis-
tant to some single or combination of drugs. These resistant
pathogenic bacteria produce β-lactamase enzyme that destroys
β-lactam antibiotics. Within the last few years potent β-lactamase
inhibitors such as clavulanic acid and sulbactam have become
available for inhibiting the action of common β-lactamases.
Regardless of the efficiency of some of these inhibitors in vitro,
their attainment has not always resulted in protection of
hydrolyzable β-lactam antibiotics in vivo. A single inhibitor is
not always effective for all of the different β-lactamases that
may occur in mixed infections [1-6]. Tetrazole containing moieties
are most important for possessing high level of biological
activities [7-14]. It includes antimicrobial as well as pharmacolo-
gical activities like antiviral, antibacterial, antifungal, anti-
allergic, anticonvulsant, anti-inflammatory etc. [15,16]. Recently,
the reported new tetrazole containing derivatives as capable
compounds for anticancer activity [17-20]. Owing to their wide
importance, much attention is being paid to the tetrazole con-
taining heterocyclic compounds [21-24]. The introduction of
the tetrazole ring into a molecule of an organic substrate quite
often leads not only to an increase in the efficiency but also to
an increase in the prolongation of drug action [25,26]. Maleamic

In the present study, two series of tetrazole containing maleamic (5a-h)
and phthaleamic acid (5i-l) derivatives were synthesized and evaluated
for their antimicrobial and β-lactamase enzyme inhibition activities.
The synthesized compounds were characterized by IR, 1H NMR and
13C NMR spectral techniques. Among the screened compounds, the
compound 5c, 5d, 5e, 5f, 5g and 5h have shown good antimicrobial
activity. We further performed exploratory β-lactamase enzyme
inhibitors studies on β-lactamase.
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acids have been extensively used as an intermediate for prepa-
ration of many other compounds and shown variety of biological
activities [27,28]. Phthaleamic acids are having wide range of
applications in many fields [29-32].

In spite of many β-lactamase inhibitors have been synthe-
sized extensively [33-38], we intend to report some new tetrazole
containing maleamic acid and phthaleamic acid derivatives as
potential β-lactamase enzyme inhibitors.

E X P E R I M E N T A L

All the chemicals used were of AR grade and purchased
from SD-Fine chemicals, India. The progress of the reaction
was monitored by thin-layer chromatography (petroleum ether
+ ethyl acetate). The IR spectra were recorded on Bruker FT-
IR spectrometer. 1H NMR and 13C NMR spectra were recorded
on Bruker DRX-300 MHz and Bruker DRX-75 MHz NMR
spectrometer, respectively by using CDCl3 as solvent. Melting
points were obtained using melting points apparatus (Model
MP-96) and are uncorrected.

General procedure for the synthesis of 1,5-disubstituted
tetrazole containing maleamic acid/phthaleamic acid (5a-l):
The maleic/phthalic anhydride (10 mmol) was taken in 50 mL
round bottom flask and 10 mL dichloromethane (DCM) was
added. The solution of 1,5-disubtituted tetrazole containing
amines (4a-h) (10 mmol) in 10 mL DCM was added to reaction
mixture slowly at 0-5 °C. Then, the reaction mixture was stirred
at room temperature for an appropriate time period. The
progress of reaction was monitored by TLC. After completion
of reaction, the solid obtained was filtered and the residue
was washed with DCM. The crude product was purified by
recrystallization by using ethanol to furnish the corresponding
1,5-disubstituted tetrazole containing maleamic/phthaleamic
acids with 70-85 % yields.

4-(3-Methyl-4-(5-methyl-1H-tetrazol-1-yl)phenylamino)-
4-oxobut-2-enoic acid (5a): Yield: 80 %; m.p.: 156-158 °C;
IR (Neat, νmax, cm–1): 3337, 2979, 1685, 1600, 1534, 1460,
1409, 1256, 1134, 1037, 885; 1H NMR (CDCl3, 400 MHz) δ
= 2.20 (s, 3H), 2.44 (s, 3H), 5.00 (s, 1H), 6.38 (d, J = 12 Hz,
1H), 6.59 (d, J = 12 Hz, 1H), 7.19-7.80 (m, 3H), 11.19 (s, 1H);
13C NMR (100 MHz, CDCl3) δ = 11.72, 17.03, 119.28, 122.88,
124.46, 131.47, 133.90, 135.30, 138.90, 141.15, 159.57,
165.29, 167.00.

4-(3-Methoxy-4-(5-methyl-1H-tetrazol-1-yl)phenyl-
amino)-4-oxobut-2-enoic acid (5b): Yield: 76 %; m.p.: 164-
166 °C; IR (Neat, νmax, cm–1): 3313, 3072, 1711, 1646, 1597,
1542, 1401, 1334, 1241, 832, 766; 1H NMR (CDCl3, 400 MHz)
δ = 2.51 (s, 3H), 3.73 (s, 3H), 5.00 (s, 1H), 6.68 (d, J = 12 Hz,
1H), 6.80 (d, J = 12 Hz, 1H), 7.60-7.75 (m, 3H), 11.19 (s, 1H);
13C NMR (100 MHz, CDCl3) δ = 11.25, 56.08, 105.04, 109.55,
111.03, 130.27, 136.96, 137.28, 139.01, 156.21, 159.58,
166.04, 167.03.

4-(4-Methyl-2-(5-methyl-1H-tetrazol-1-yl)phenylamino)-
4-oxobut-2-enoic acid (5c): Yield: 75 %; m.p.: 165-167 °C;
IR (Neat, νmax, cm–1): 3341, 2978, 1700, 1672, 1549, 1513,
1330, 1276, 895; 1H NMR (CDCl3, 400 MHz) δ = 2.33 (s,
3H), 2.57 (s, 3H), 6.56 (d, J = 12 Hz, 1H), 6.88 (d, J = 12 Hz,
1H), 7.26-7.83 (m, 3H), 10.13 (s, 1H), 11.06 (s, 1H); 13C NMR
(100 MHz, CDCl3) δ = 10.86, 21.00, 120.64, 122.81, 124.67,

128.44, 134.09, 136.66, 138.31, 141.17, 159.67, 166.78,
168.20.

4-(4-Methyl-2-(5-methyl-1H-tetrazol-1-yl)phenylamino)-
4-oxobut-2-enoicacid (5d): Yield: 78 %; m.p.: 217-219 °C;
IR (Neat, νmax, cm–1): 3196, 3127, 1731, 1651, 1605, 1550,
1329, 1243, 1124, 813, 737; 1H NMR (CDCl3, 400 MHz) δ =
2.40 (s, 3H), 5.12 (s, 1H), 6.35 (d, J = 12 Hz, 1H), 6.51 (d, J =
12 Hz, 1H), 7.11-7.25 (m, 4H), 11.34 (s, 1H); 13C NMR (100
MHz, CDCl3) δ = 11.68, 122.10, 128.11, 129.68, 134.35,
136.74, 139.10, 159.77, 166.29, 166.73.

4-(4-Methyl-3-(5-methyl-1H-tetrazol-1-yl)phenylamino)-
4-oxobut-2-enoic acid (5e): Yield: 72 %; m.p.: 188-190 °C;
IR (Neat, νmax, cm–1): 3277, 3078, 1703, 1627, 1549, 1511,
1406, 1321, 977, 847; 1H NMR (CDCl3, 400 MHz) δ = 2.17
(s, 3H), 2.51 (s, 3H), 5.01 (s, 1H), 6.80 (d, J = 12 Hz, 1H),
7.30 (d, J = 12 Hz, 1H), 7.44-7.75 (m, 3H), 11.56 (s, 1H); 13C
NMR (100 MHz, CDCl3) δ = 11.06, 16.57, 103.09, 119.28,
127.61, 128.85, 132.30, 135.30, 138.63, 138.80, 159.57,
166.47, 167.00.

(Z)-4-((2-(5-Methyl-1H-tetrazol-1-yl)phenyl)amino)-4-
oxobut-2-enoic acid (5h): Yield: 82 %; m.p.: 139-141 °C; IR
(Neat, νmax, cm–1): 3340, 2985, 1700, 1672, 1613, 1548, 1513,
1406, 1330, 1276, 895; 1H NMR (CDCl3, 400 MHz) δ = 2.57
(s, 3H), 6.39 (d, J = 12 Hz, 1H), 6.46 (d, J = 12 Hz, 1H), 7.30
(d, J = 8 Hz, 1H), 7.45 (t, J = 8 Hz, 1H), 7.69 (t, J = 8 Hz, 1H),
8.39 (d, J = 8 Hz, 1H), 9.88 (s, 1H).

βββββ-Lactase enzyme inhibition activity: The synthesized
compounds were tested for their β-lactamase inhibitor and
antibacterial property against β-lactamase trait carrying E. coli
culture. The bacterial growth inhibition potential of the
individual compound gives an idea about antibacterial activity
of compound, whereas bacterial growth inhibition by the
combination of compound and β-lactam antibiotics gives an
idea about β-lactamase inhibitory activity of compound. The
Luriea Bartani (LB) agar plates of E. coli cultures were prepared
by pour plate method and on these plates, the compound’s β-
lactamase inhibitor and antibacterial were tested by combined
disc diffusion assay and disc diffusion assay respectively. The
20 mg of synthesized compound was dissolved in 0.5 mL of
DMSO. It was diluted to 1.0 mL stock solution by sterile
distilled water. From that stock solution, 20 µL solution was
placed on a plane sterile disc and β-lactam antibiotic discs.
These discs were kept at 4 °C for 0.5 h for diffusion of solution.
After 0.5 h, the discs of concentration as 400 µg/discs were
ready to use. The obtained zone of inhibitions were compared
with standard β-lactam antibiotic and β-lactam antibiotic/
inhibitor, against respective classes of β-lactamase trait carrying
E. coli culture (for Class A cefotaxime & cefotaxime/clavulanic
acid, for Class B imipenam & imipenam/100 mM EDTA, for
cefoxine & cefoxine/100 mM phenyl boronic acid, for Class
D no such combination available). The results were interpreted
according to CLSI guidelines, for combine disc diffusion assay.
The zones were interpreted by consideration of extra 5 mm
zone.

R E S U L T S A N D   D I S C U S S I O N

In continuation with our efforts for the synthesis of biolo-
gically active target molecules [39-41], herein we have reported
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the synthesis, β-lactamase enzyme inhibitory and antimicrobial
activities of some new tetrazole containing maleamic acid
and phthaleamic acid (5a-l) (Schemes I and II) [42-45]. The
structures of synthesized compounds were confirmed by IR,
1H NMR and 13C NMR spectral techniques. The physical data
of the synthesized compounds (5a-l) is summarized in Table-1.
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All β-lactam antibiotics are disturbing the biosynthesis
of the bacterial cell wall. The β-lactam antibiotics exhibit their
bactericidal effects by inhibiting enzymes involved in cell wall
synthesis. The production of β-lactamase is one of the primary
mechanisms used by Gram-negative bacteria to counter β-
lactam antibiotics, such as penicillin, cephalosporin, mono
bactam and carbapenem. There is crucial need to develop novel
β-lactamase inhibitors in response to ever-evolving β-lacta-
mases possessing an expanded spectrum of β-lactam hydro-
lyzing activity.

The tetrazolic acid fragment –CN4H has similar acidity
to the carboxylic acid group –CO2H (likely present in amino
acids) and these two are almost isosteric, but the former is
metabolically more stable. Hence, replacement of –CO2H
groups by –CN4H may lead to solving number of biologically
originated problems, this property that makes it possible to
use tetrazole as isosteric substituents of various functional
groups in the development of biologically active substances
[46]. The tetrazole compounds interact with carboxylic acid
group and amido group of amino acids so these compounds
lead to change the structure of peptide chain and functional
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TABLE-1 
PHYSICAL DATA OF SYNTHESIZED COMPOUNDS (5a-l) 
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activity of proteins. In some cases researchers found that tetra-
zole compounds were effectively inhibiting the action of serine
β-lactamase enzyme [47]. In present study, it was found that
nearly all compounds shown in vitro β-lactamase enzyme
inhibition activity against β-lactamase trait carrying organisms
(Table-2). When these compounds used in combination with
antibiotics that time this combination gave synergetic effect.
At the same time, some of these compounds shown antibac-
terial activity against β-lactamase trait carrying microbes.

β-Lactamase inhibitory activities of compounds were eva-
luated by disc-diffusion pour plate method, against β-lactamase
trait carrying culture. Antibacterial susceptibility was tested
using the discs of i) compound ii) standard combination of β-
lactam antibiotic & β-lactamase inhibitor iii) β-lactam
antibiotic iv) β-lactam antibiotic and compound in clockwise
manner. From Table-2, it was observed that the compound 5a
has shown antibacterial activity against Class A organisms.
While all our compounds 5a, 5h and 5i shown synergetic effect

TABLE-2 
β-LACTAMASE ENZYME INHIBITION ACTIVITY OF COMPOUNDS (5a-l) 

Zone of inhibition (mm) 
Entry β-Lactamase 

type 
Culture 

Compound Antibiotic Standard 
combinations* 

Antibiotic + 
Compounds 

A ESBL-3 – 10 – 25 
 ESBL-16 – 10 – 24 

B ESBL-5 – 29 29 29 
 ESBL-17 – 37 36 35 

C ESBL-9 16 – 18 18 
 ESBL-22 – 39 39 39 

D ESBL-10 – – – – 

5a 

 ESBL-28 – – – – 
A ESBL-3 – 16 31 – 
 ESBL-16 – – 28 10 

B ESBL-5 – 32 32 – 
 ESBL-17 – 31 34 29 

C ESBL-9 – – 18 – 
 ESBL-22 – – – – 

D ESBL-10 – – – – 

5b 

 ESBL-28 – – 10 – 
A ESBL-3 – – 25 – 
 ESBL-16 – – 22 10 

B ESBL-5 – 25 20 29 
 ESBL-17 – 27 22 23 

C ESBL-9 – – 18 – 
 ESBL-22 11 34 33 33 

D ESBL-10 – – – – 

5c 

 ESBL-28 – – 14 – 
A ESBL-3 – – 31 12 
 ESBL-16 – – – – 

B ESBL-5 – 30 24 24 
 ESBL-17 – 30 27 23 

C ESBL-9 – – 14 – 
 ESBL-22  33 32 33 

D ESBL-10 – – – – 

5d 

 ESBL-28 – – – – 
A ESBL-3 – – 24 – 
 ESBL-16 – – 25 – 

B ESBL-5 – 23 18 16 
 ESBL-17 – 27 12 13 

C ESBL-9 – – 17 – 
 ESBL-22 – – – – 

D ESBL-10 – – – – 

5e 

 ESBL-28 – – – – 
A ESBL-3 – – 19 – 
 ESBL-16 – – 22 – 

B ESBL-5 – 26 18 28 
 ESBL-17 – 22 19 22 

C ESBL-9 – – 19 – 
 ESBL-22 – 14 14 13 

D ESBL-10 – – – – 

5f 

 ESBL-28 – – – – 
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with β-lactam antibiotics against particular β-lactamase trait
carrying cultures (it means that these compounds have inhi-
bitory activity) except compound 5f which didn’t have any
effect. Two compounds 5i and 5h shown β-lactamase inhibitor
activity against Class B, D and A, D enzyme respectively, but
at the same time these two compounds also show antagonist
action against Class C and Class B.

The in vitro antimicrobial activity of all synthesized com-
pounds was assessed by using agar well diffusion method with
some modifications [48,49]. For screening of antibacterial activity,
both Gram-positive and Gram-negative bacterial pathogens

A ESBL-3 – 9 28 – 
 ESBL-16 – – 22 – 

B ESBL-5 – 21 21 20 
 ESBL-17 – 23 25 24 

C ESBL-9 – – 20 – 
 ESBL-22 – 21 21 12 

D ESBL-10 – – – 10 

5g 

 ESBL-28 – – – 10 
A ESBL-3 – 10 28 12 
 ESBL-16 – – 24  

B ESBL-5 – 20 29 12 
 ESBL-17 – 20 22 13 

C ESBL-9 – – 17 – 
 ESBL-22 – 13 19 13 

D ESBL-10 – – – 10 

5h 

 ESBL-28 – – – – 
A ESBL-3 10  20 – 
 ESBL-16 12  20  

B ESBL-5 – 25 17 22 
 ESBL-17 – 21 15 21 

C ESBL-9 – – 17 – 
 ESBL-22 – 14 18 11 

D ESBL-10 12 – – – 

5i 

 ESBL-28 – – – – 
A ESBL-3 – 10 31 – 
 ESBL-16 – – 24 – 

B ESBL-5 – 20 20 18 
 ESBL-17 – 21 21 22 

C ESBL-9 – – 21 – 
 ESBL-22 – 22 21 15 

D ESBL-10 – – – 10 

5j 

 ESBL-28 – – – 10 
A ESBL-3 – – 24 19 
 ESBL-16 – – 22 10 

B ESBL-5 – 24 23 23 
 ESBL-17 – 20 20 19 

C ESBL-9 – – 16 – 
 ESBL-22 – 14 23 13 

D ESBL-3 – – 24 19 

5k 

 ESBL-16 – – 22 10 
A ESBL-3 – – 27 – 
 ESBL-16 – – 23 – 

B ESBL-5 – 20 22 19 
 ESBL-17 – 19 19 17 

C ESBL-9 – – 19 – 
 ESBL-22 – 12 20 15 

D ESBL-10 – 9 – – 

5l 

 ESBL-28 – – – – 
*Standard β-lactam antibiotic and β-lactamase inhibitor combination for Class A: cefotaxime + clavulanic acid; Class B: imipenam + 100 mM 
EDTA; Class C: cefoxitin + 100 mM phenyl boronic acid; Class D: not defined. 

 
were used, while for antifungal activity potent fungal pathogens
were used. Staphylococcus aureus ATCC 6538, Bacillus cereus
ATCC 14579, Bacillus megaterium ATCC 2326, Bacillus
subtilis ATCC 6633 were Gram-positive pathogens used in this
study. Escherichia coli ATCC 8739, Salmonella typhi ATCC
9207, Shigella boydii ATCC 12034, Enterobacter aerogenes
ATCC 13048, Pseudomonas aeruginosa ATCC 9027, Salmonella
abony NCTC 6017 were the Gram-negative pathogens used
in this study. Antifungal activity of synthesized compounds
was determined against Aspergillus niger ATCC 16404,
Saccharomyces cereviseae ATCC 9763 and Candida albicans
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ATCC 10231 fungal pathogens. Fluconazole and tetracycline
were used as antifungal and antibacterial standard reference
compounds respectively. The diameter of the zone of inhibition
is given in millimetre. Compound 5c, 5e and 5g have shown
good antibacterial and antifungal activity. Compound 5d, 5f
and 5h have shown significant antibacterial activity but these
compounds didn’t show activity against fungal pathogens.
Compound 5a has shown activity against only Gram-positive
bacterial pathogens (Table-3).

The MIC was determined for the six most potent anti-
microbial compounds 5c, 5d, 5e, 5f, 5g and 5h. The MIC was
determined against S. aureus ATCC 6538, S. typhi ATCC 9207
and A. niger ATCC 16404 (Table-4). The MIC was determined
by following the method and guidelines of the Clinical and
Laboratory Standard Institute (CLSI). All experiments were
performed in triplicates. The results are expressed as mean ±
SD in µg/mL.

Conclusion

In this study, the synthesis, antimicrobial and β-lactamase
inhibitory activities of 1,5-disubstituted tetrazole containing
maleamic/phthaleamic acid derivatives are reported. The 1,5-
disubstituted tetrazole containing maleamic acid derivatives
have shown better antimicrobial activities as compared to
phthaleamic acid derivatives. Few of the synthesized com-
pounds have shown very good antimicrobial and β-lactamase
inhibitor activities.
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A. niger – – 13 12 15 10 14 12 – – – – 30 
S. cerevisiae – – 10 13 12 – 12 – – – – – 30 
C. albicans – – 10 – 12 – 13 – – – – – 28 

 
TABLE-4 

MIC VALUES OF MOST POTENT COMPOUNDS  

Compounds 
Pathogens 

5c 5d 5e 5f 5g 5h 
Standard 

S. aureus 320 ± 2.7 312 ± 1.4 390 ± 3.3 295 ± 2.8 428 ± 0.6 400 ± 3.3 5 ± 1.4 (Tetracycline) 
S. typhi 420 ± 2.8 573 ± 3.3 380 ± 3.3 320 ± 2.8 261 ± 1.6 460 ± 2.8 3.0 ± 1.5 (Tetracycline) 
A. niger 500 ± 3.3 516 ± 4.4 420 ± 2.8 550 ± 0.0 472 ± 1.4 510 ± 3.3 18 ± 1.4 (Fluconazole 
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