Main Article Content

Abstract

In an effort to evaluate and design fast, accurate density functional theory (DFT) methods for 5-(4-methoxyphenyl)-3-(1-methylindol- 3yl)isoxazole compound was done using Gaussion’ 09 program package using B3LYP method with the 6-31G basis set, which has been successfully applied in order to derive the optimized geometry, bonding features, harmonic vibrational wave numbers, NBO analysis and Mulliken population analysis on atomic charges in the ground state. Optimized geometries of the molecule have been described and collate with the experimental values. The experimental atomic charges demonstrates adequate concurrence with the theoretical prediction from DFT. The theoretical spectra values have been interpreted and compared with the FT-IR spectra. The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gaps also confirm that charge transfer takes place within the molecule.

Keywords

Indolyl isoxazole Density functional theory Mulliken

Article Details

How to Cite
Jani Matilda, J., & Abbs Fen Reji, T. (2019). Molecular Structural and Vibrational Spectroscopic Assignments of 5-(4- Methoxyphenyl)-3-(1-methylindol-3-yl)- isoxazole using DFT Theory Calculations. Asian Journal of Organic & Medicinal Chemistry, 4(3), 147–151. https://doi.org/10.14233/ajomc.2019.AJOMC-P186

References

  1. A.E. Ledesma, S.A. Brandan, J. Zinczuk, O.E. Piro, J.J. Lopez Gonzalez and A.B. Altabef, Structural and Vibrational Study of 2-(2¢-Furyl)-1H-imidazole, J. Phys. Org. Chem., 21, 1086 (2008); https://doi.org/10.1002/poc.1449.
  2. A. Brancale and R. Silvestri, Indole, A Core Nucleus for Potent Inhibitors of Tubulin Polymerization, Med. Res. Rev., 27, 209 (2007); https://doi.org/10.1002/med.20080.
  3. N.K. Kaushik, N. Kaushik, P. Attri, N. Kumar, C.H. Kim, A.K. Verma and E.H. Choi, Biomedical Importance of Indoles, Molecules, 18, 6620 (2013); https://doi.org/10.3390/molecules18066620.
  4. S. Battaglia, E. Boldrini, F.D. Settimo, G. Dondio, C.L. Motta, A.M. Marini and G. Primofiore, Indole Amide Derivatives: Synthesis, Structure-Activity Relationships and Molecular Modelling Studies of a New Series of Histamine H1-Receptor Antagonists, Eur. J. Med. Chem., 34, 93 (1999); https://doi.org/10.1016/S0223-5234(99)80044-0.
  5. R. Antoine, T. Tabarin, M. Broyer, P. Dugourd, R. Mitric and V. Bonacic-Koutecky, Optical Properties of Gas-Phase Tryptophan–Silver Cations: Charge Transfer from the Indole Ring to the Silver Atom, Chem. Phys. Chem., 7, 524 (2006); https://doi.org/10.1002/cphc.200500495.
  6. C.Y. Panicker, K.R. Ambujakshan, H.T. Varghese, S. Mathew, S. Ganguli, A.K. Nanda and C.V. Alsenoy, FT-IR, FT-Raman and DFT calculations of 3-{[(4-Fluorophenyl)methylene]amino}-2-phenylquinazolin-4(3H)-one, J. Raman Spectrosc., 40, 527 (2009); https://doi.org/10.1002/jrs.2159.
  7. Y.S. Mary, K. Raju, T.E. Bolelli, I. Yildiz, H.I.S. Nogueira, C.M. Granadeiro and C.V. Alseony, FT-IR, FT-Raman, Surface Enhanced Raman Scattering and Computational Study of 2-(P-Fluorobenzyl)-6-Nitrobenzoxazole, J. Mol. Struct., 1012, 22 (2012); https://doi.org/10.1016/j.molstruc.2011.12.042.
  8. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople, Gaussian 98, Revision A.9, Gaussian Inc., Pittsburgh, PA (1998).
  9. A.D. Becke, Density Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913.
  10. C.T. Lee, W.T.Yang and R.G.B. Parr, Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density, Phys. Rev., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785.
  11. D.A. Petersson and M.A. Alla, A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms, J. Chem. Phys., 94, 6081 (1991); https://doi.org/10.1063/1.460447.
  12. G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Allaham, W.A.J. Mantzaris and W.A. Shirley, A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-shell Atoms and Hydrides of the First-Row Elements, J. Chem. Phys., 89, 2193 (1988); https://doi.org/10.1063/1.455064.
  13. A.P. Scott and L. Radom, Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory and Semiempirical Scale Factors, J. Phys. Chem., 100, 16502 (1996); https://doi.org/10.1021/jp960976r.
  14. E. Runge and E.K.U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett., 52, 997 (1984); https://doi.org/10.1103/PhysRevLett.52.997.
  15. G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:: AID-JCC10>3.0.CO;2-B.
  16. T. Koopmans, Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2.
  17. R.S. Mulliken, Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I, J. Chem. Phys., 23, 1833 (1955); https://doi.org/10.1063/1.1740588.
  18. J.K. Wilmshust and H.J. Bernstein, The Infrared and Raman Spectra of Toluene, Toluene-a-d3, m-Xylene and m-Xylene-aa¢-d6, Can. J. Chem., 35, 911 (1957); https://doi.org/10.1139/v57-123.