Main Article Content

Abstract

The synthesis of a novel tolylthiopyrazol bearing methyl group has been achieved by transition metal free N-chlorosuccinimide mediated direct sulfenylation of 1-aryl pyrazolones at room temperature. The product obtained was characterized by spectroscopic techniques and finally confirmed by X-ray diffraction studies. The compound 1-(2-chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol (m.f. C17H15N2OSCl) crystallizes in monoclinic crystal class in space group P21/c with cell parameters a = 9.6479(5) Å, b = 15.1233(8) Å, c = 11.4852(6) Å, β = 108.374(2)°, V=1590.4(2) Å3 and Z = 4. The final residual factor R1 = 0.0499.

Keywords

Pyrazolone Sulfenylation Crystal structure Hydrogen bonding

Article Details

How to Cite
D. Kamani, R., P. Thummar, R., H. Sapariya, N., K. Vaghasiya, B., R. Avalani, J., B. Purohit, V., … K. Raval, D. (2019). Synthesis, Characterization, Crystal and Molecular Structure Analysis of 1-(2-Chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol. Asian Journal of Organic & Medicinal Chemistry, 4(4), 267–272. https://doi.org/10.14233/ajomc.2019.AJOMC-P189

References

  1. D.J. Ager, Silicon-Containing Carbonyl Equivalents, Chem. Soc. Rev., 11, 493 (1982); https://doi.org/10.1039/cs9821100493.
  2. T. Kondo and T.-A. Mitsudo, Metal-Catalyzed Carbon-Sulfur Bond Formation, Chem. Rev., 100, 3205 (2000); https://doi.org/10.1021/cr9902749.
  3. T. Konosu, S. Oida, Y. Nakamura, S. Seki, T. Uchida, A. Somada, M. Mori, Y. Harada, Y. Kamai, T. Harasaki, T. Fukuoka, S. Ohya, H. Yasuda, T. Shibayama, S. Inoue, A. Nakagawa and Y. Seta, Synthesis and in vitro Antifungal Activities of Novel Triazole Antifungal Agent CS-758, Chem. Pharm. Bull., 49, 1647 (2001); https://doi.org/10.1248/cpb.49.1647.
  4. A.Y. Sizov, A.N. Kovregin and A.F. Ermolov, Fluorine-Containing Alkyl(aryl) Vinyl Sulfides, Russian Chem. Rev., 72, 357 (2003); https://doi.org/10.1070/RC2003v072n04ABEH000784.
  5. S. Guo, W. He, J. Xiang and Y. Yuan, Palladium-Catalyzed Direct Thiolation of Ethers with Sodium Sulfinates, Tetrahedron Lett., 55, 6407 (2014); https://doi.org/10.1016/j.tetlet.2014.09.098.
  6. X. Zhao, L. Zhang, T. Li, G. Liu, H. Wang and K. Lu, p-Toluene-sulphonic Acid-Promoted, I2-Catalysed Sulphenylation of Pyrazolones with Aryl Sulphonyl Hydrazides, Chem. Commun., 50, 13121 (2014); https://doi.org/10.1039/C4CC05237D.
  7. P. Saravanan and P. Anbarasan, Palladium Catalyzed Aryl(alkyl)thiolation of Unactivated Arenes, Org. Lett., 16, 848 (2014); https://doi.org/10.1021/ol4036209.
  8. A. Correa, M. Carril and C. Bolm, Iron-Catalyzed S-Arylation of Thiols with Aryl Iodides, Angewandte Chemie, 120, 2922 (2008); https://doi.org/10.1002/ange.200705668.
  9. H. Tian, C. Zhu, H. Yang and H. Fu, Iron or Boron-Catalyzed C–H Arylthiation of Substituted Phenols at Room Temperature, Chem. Commun., 50, 8875 (2014); https://doi.org/10.1039/C4CC03600J.
  10. T.-T. Wang, F.-X. Wang, F.-L. Yang and S.-K. Tian, Palladium-Catalyzed Aerobic Oxidative Coupling of Enantioenriched Primary Allylic Amines with Sulfonyl Hydrazides Leading to Optically Active Allylic Sulfones, Chem. Commun., 50, 3802 (2014); https://doi.org/10.1039/C4CC00275J.
  11. W.-Y. Wu, J.-C. Wang and F.-Y. Tsai, A Reusable FeCl3·6H2O/Cationic 2,2'-Bipyridyl Catalytic System for the Coupling of Aryl Iodides with Thiols in Water under Aerobic Conditions, Green Chem., 11, 326 (2009); https://doi.org/10.1039/b820790a.
  12. I.P. Beletskaya and V.P. Ananikov, Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions, Chem. Rev., 111, 1596 (2011); https://doi.org/10.1021/cr100347k.
  13. S.S. Mansy and J. Cowan, Iron-Sulfur Cluster Biosynthesis: Toward an Understanding of Cellular Machinery and Molecular Mechanism, Acc. Chem. Res., 37, 719 (2004); https://doi.org/10.1021/ar0301781.
  14. T. Punniyamurthy, S. Velusamy and J. Iqbal, Recent Advances in Transition Metal Catalyzed Oxidation of Organic Substrates with Molecular Oxygen, Chem. Rev., 105, 2329 (2005); https://doi.org/10.1021/cr050523v.
  15. W. Ge and Y. Wei, Iodine-Catalyzed Oxidative System for 3-Sulfenyla-tion of Indoles with Disulfides using DMSO as Oxidant under Ambient Conditions in Dimethyl Carbonate, Green Chem., 14, 2066 (2012); https://doi.org/10.1039/c2gc35337g.
  16. C.D. Prasad, S.J. Balkrishna, A. Kumar, B.S. Bhakuni, K. Shrimali, S. Biswas and S. Kumar, Transition-Metal-Free Synthesis of Unsymmetrical Diaryl Chalcogenides from Arenes and Diaryl Dichalcogenides, J. Org. Chem., 78, 1434 (2013); https://doi.org/10.1021/jo302480j.
  17. P. Sang, Z. Chen, J. Zou and Y. Zhang, K2CO3 Promoted Direct Sulfenylation of Indoles: A Facile Approach towards 3-Sulfenylindoles, Green Chem., 15, 2096 (2013); https://doi.org/10.1039/c3gc40724a.
  18. Y. Liao, P. Jiang, S. Chen, H. Qi and G.-J. Deng, Iodine-Catalyzed Efficient 2-Arylsulfanylphenol Formation from Thiols and Cyclo-hexanones, Green Chem., 15, 3302 (2013); https://doi.org/10.1039/c3gc41671b.
  19. C.-R. Liu and L.-H. Ding, Byproduct Promoted Regioselective Sulfenylation of Indoles with Sulfinic Acids, Org. Biomol. Chem., 13, 2251 (2015); https://doi.org/10.1039/C4OB02575J.
  20. F. Xiao, S. Chen, J. Tian, H. Huang, Y. Liu and G.-J. Deng, Chemo-selective Cross-Coupling Reaction of Sodium Sulfinates with Phenols under Aqueous Conditions, Green Chem., 18, 1538 (2016); https://doi.org/10.1039/C5GC02292D.
  21. F. Xiao, H. Xie, S. Liu and G.J. Deng, Iodine-Catalyzed Regioselective Sulfenylation of Indoles with Sodium Sulfinates, Adv. Synth. Catal., 356, 364 (2014); https://doi.org/10.1002/adsc.201300773.
  22. P. Khloya, S. Kumar, P. Kaushik, P. Surain, D. Kaushik and P.K. Sharma, Synthesis and Biological Evaluation of Pyrazolylthiazole Carboxylic Acids as Potent Anti-inflammatory–Antimicrobial Agents, Bioorg. Med. Chem. Lett., 25, 1177 (2015); https://doi.org/10.1016/j.bmcl.2015.02.004.
  23. V. Kumar, K. Kaur, G.K. Gupta and A.K. Sharma, Pyrazole containing natural products: Synthetic preview and biological significance, Eur. J. Med. Chem., 69, 735 (2013); https://doi.org/10.1016/j.ejmech.2013.08.053.
  24. A. Bell, Sildenafil (VIAGRATM), A Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X.
  25. V.B. Purohit, S.C. Karad, K.H. Patel and D.K. Raval, Palladium N-Heterocyclic Carbene Catalyzed Regioselective Thiolation of 1-Aryl-3-methyl-1H-pyrazol-5(4H)-ones using Aryl Thiols, Tetrahedron, 72, 1114 (2016); https://doi.org/10.1016/j.tet.2016.01.012.
  26. H. B’Bhatt and S. Sharma, Synthesis and Antimicrobial Activity of Pyrazole Nucleus Containing 2-Thioxothiazolidin-4-one Derivatives, Arabian J. Chem., 10, S1590 (2017); https://doi.org/10.1016/j.arabjc.2013.05.029.
  27. S. Malladi, A.M. Isloor, S.K. Peethambar, B.M. Ganesh and P.S. Goud, Synthesis and Antimicrobial Activity of Some New Pyrazole Containing Cyanopyridone Derivatives, Der Pharm. Chem., 4, 43 (2012).
  28. M. Abdel-Aziz, G.E.-D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032.
  29. D. Kaushik, S.A. Khan, G. Chawla and S. Kumar, N’-[(5-Chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-Substituted Hydrazides: Synthesis and Anticonvulsant Activityt, Eur. J. Med. Chem., 45, 3943 (2010); https://doi.org/10.1016/j.ejmech.2010.05.049.
  30. K.M. Dawood, T.M. Eldebss, H.S. El-Zahabi, M.H. Yousef and P. Metz, Synthesis of Some New Pyrazole-Based 1,3-Thiazoles and 1,3,4-Thiadiazoles as Anticancer Agents, Eur. J. Med. Chem., 70, 740 (2013); https://doi.org/10.1016/j.ejmech.2013.10.042.
  31. I. Koca, A. Özgür, K.A. Coskun and Y. Tutar, Synthesis and Anticancer Activity of Acyl Thioureas Bearing Pyrazole Moiety, Bioorg. Med. Chem., 21, 3859 (2013); https://doi.org/10.1016/j.bmc.2013.04.021.
  32. A. Vijesh, A.M. Isloor, P. Shetty, S. Sundershan and H.K. Fun, New Pyrazole Derivatives Containing 1,2,4-Triazoles and Benzoxazoles as Potent Antimicrobial and Analgesic Agents, Eur. J. Med. Chem., 62, 410 (2013); https://doi.org/10.1016/j.ejmech.2012.12.057.
  33. N. Gökhan-Kelekci, S. Yabanoglu, E. Küpeli, U. Salgin, Ö. Özgen, G. Ucar, E. Yesilada, E. Kendi, A. Yesilada and A.A. Bilgin, A New Therapeutic Approach in Alzheimer Disease: Some Novel Pyrazole Derivatives as Dual MAO-B Inhibitors and Antiinflammatory Analgesics, Bioorg. Med. Chem., 15, 5775 (2007); https://doi.org/10.1016/j.bmc.2007.06.004.
  34. R.C. Khunt, V.M. Khedkar, R.S. Chawda, N.A. Chauhan, A.R. Parikh and E.C. Coutinho, Synthesis, Antitubercular Evaluation and 3D-QSAR Study of N-Phenyl-3-(4-fluorophenyl)-4-substituted Pyrazole Derivatives, Bioorg. Med. Chem. Lett., 22, 666 (2012); https://doi.org/10.1016/j.bmcl.2011.10.059.
  35. R.B. Pathak, P.T. Chovatia and H.H. Parekh, Synthesis, Antitubercular and Antimicrobial Evaluation of 3-(4-Chlorophenyl)-4-substituted Pyrazole Derivatives, Bioorg. Med. Chem. Lett., 22, 5129 (2012); https://doi.org/10.1016/j.bmcl.2012.05.063.
  36. D. Raffa, B. Maggio, M.V. Raimondi, S. Cascioferro, F. Plescia, G. Cancemi and G. Daidone, Recent Advanced in Bioactive Systems Containing Pyrazole Fused with a Five Membered Heterocycle, Eur. J. Med. Chem. 97, 732 (2015); https://doi.org/10.1016/j.ejmech.2014.12.023.
  37. R.D. Kamani, V.B. Purohit, R.P. Thummar, N.H. Sapariya, B.K. Vaghasiya, K.H. Patel, C.T. Pashavan, M.K. Shah and D.K. Raval, One-Pot Catalyst-Free Direct Sulfenylation of 1-Aryl Pyrazolones with Aryl Thiols at Room Temperature, Chem. Select, 2, 9670 (2017); https://doi.org/10.1002/slct.201701924.
  38. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G.T. Polidori and M. Camalli, SIR92 - A Program for Automatic Solution of Crystal Structures by Direct Methods, J. Appl. Crystallogr., 27, 435 (1994); https://doi.org/10.1107/S002188989400021X.
  39. J.W. Pflugrath, The Finer Things in X-Ray Diffraction Data Collection, Acta Cryst. D, 55, 1718 (1999); https://doi.org/10.1107/S090744499900935X.
  40. L. Song and T. Iyoda, Supramolecular Framework Based on Pyridinio-diketone Ligand via Non-classic Hydrogen Bonding, J. Inorg. Organomet. Polym. Mater., 19, 124 (2009); https://doi.org/10.1007/s10904-008-9251-7.
  41. T. Kimura, C. Chang, F. Kimura and M. Maeyama, The Pseudo-Single-Crystal Method: A Third Approach to Crystal Structure Determination, J. Appl. Crystallogr., 42, 535 (2009); https://doi.org/10.1107/S0021889809013430.
  42. D.T. Cromer and J.-T. Waber, International Tables for X-Ray Crystallo-graphy, Kynoch Press: Birmingham, England (1974).
  43. J.A. Ibers and W.C. Hamilton, Dispersion Corrections and Crystal Structure Refinements, Acta Crystallogr., 17, 781 (1964); https://doi.org/10.1107/S0365110X64002067.
  44. A.J.C. Wilson, International Tables for Crystallography: Mathematical, Physical and Chemical Tables, International Union of Crystallography (1992).
  45. D. Creagh and W.J. McAuley, ed.: A.J.C. Wilson, International Tables for Crystallography, Kluwer Academic Publishers, Bostan, pp. 200-206 (1992).
  46. Crystal Structure 4.0, Crystal Structure Analysis Package, Rigaku Corporation, Tokyo, Japan (2000-2010).
  47. G.M. Sheldrick, Crystal Structure Refinement with SHELXL, Acta Crystallogr. C: Struct. Chem., C71, 3 (2015); https://doi.org/10.1107/S2053229614024218.
  48. A.-X. Tian, X.-B. Ji, N. Sun, R. Xiao, Y.-Y. Zhao, H.-P. Ni, Y. Tian and J. Ying, Four New Coordination Polymers Constructed by 2-(4-Thiazolyl)benzimidazole and 1,3,5-Benzenetricarboxylic Acid, J. Chem. Crystallogr., 47, 1 (2017); https://doi.org/10.1007/s10870-016-0674-7.
  49. J. Bruno-Colmenarez, R. Atencio, M. Quintero, L. Seijas, R. Almeida and L. Rincón, Crystal Structure Analysis and Topological Study of Non-covalent Interactions in 2,2-Biimidazole:Salicylic Acid 2:1 Co-crystal, J. Chem. Crystallogr., 47, 47 (2017); https://doi.org/10.1007/s10870-017-0679-x.