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I N T R O D U C T I O N

Sulfur-containing compounds play essential role in natural
products and bioactive compounds such as drugs, agrochemicals
and functional materials [1-4]. In previous years, attempts have
been dedicated to develop new methods for C–S bond cons-
truction. Accordingly, novel and efficient approaches for the
formation of C–S bonds is an essential issue in modern organic
chemistry. Highly efficient synthetic approach to sulfenylated
pyrazoles via palladium [5], iodine [6], copper [7] and iron
[8-11] catalyzed cross couplings of thiols or disulfides with
aryl halides are reported. In recent years, transition metal-free
syntheses for C–S bond formation via C–H bond sulfenylation
reactions have also been intensively studied. In these transfor-
mations, various sulfenylating reagents such as aryl sulfonyl
hydrazides [12-14], diaryl disulfides [15-17], aryl sulfonyl
chlorides [18], sulfinic acids [19] and sodium sulfinates [20,21]
have been extensively used. Hence, directly using thiols as
sulfenylation reagent appears synthetically attractive.

Pyrazolones or pyrazoles have received huge attention in
recent years due to their wide applications in dyes and agro-
chemicals [22]. The pyrazole derivatives occur in many biolo-
gically active natural and clinical products such as pyrazofurin,
4-methoxywithasomnine and formycin [23], crizotinib, fipronil
and celebrex [24], respectively. The introduction of thiols into

The synthesis of a novel tolylthiopyrazol bearing methyl group has
been achieved by transition metal free N-chlorosuccinimide mediated
direct sulfenylation of 1-aryl pyrazolones at room temperature. The
product obtained was characterized by spectroscopic techniques and
finally confirmed by X-ray diffraction studies. The compound 1-(2-
chlorophenyl)-3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol (m.f.
C17H15N2OSCl) crystallizes in monoclinic crystal class in space group
P21/c with cell parameters a = 9.6479(5) Å, b = 15.1233(8) Å, c =
11.4852(6) Å, β = 108.374(2)°, V=1590.4(2) Å3 and Z = 4. The final
residual factor R1 = 0.0499.
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pyrazole in a regioselective fashion could enhance or alter its
biological and pharmacological activity [25]. Pyrazole and its
derivatives represent one of the most active classes of com-
pounds, which exhibit broad spectrum of pharmacological
activities like antimicrobial [26,27], anticonvulsant [28,29],
anticancer [30,31], analgesic [32], anti-inflammatory [30,33],
antitubercular [34,35], cardiovascular [36] etc.

Considering the importance of the pyrazole and thiol
frameworks, together with our growing interest in sulfur-con-
taining compounds synthesis, herein we wish to report a novel
and single step reaction strategy for the construction of thiol-
substituted pyrazoles C–H bond sulfenylation under transition
metal free conditions (Scheme-I) [37].
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Scheme-I: Synthetic protocol for 1-(2-chlorophenyl)-3-methyl-4-(p-
tolylthio)-1H-pyrazol-5-ol

E X P E R I M E N T A L

Synthesis of 1-(2-chlorophenyl)-3-methyl-4-(p-tolylthio)-
1H-pyrazol-5-ol: In a round bottom flask, a mixture of aryl
thiols (1.0 mmol) and N-chlorosuccinimide (NCS) (1.2 mmol)
was magnetically stirred in 2 mL of dichloromethane (DCM)
for 0.5 h. 1-Aryl pyrazolones (1.0 mmol) was added to it.
Stirring was continued for further 15-30 min at room tempera-
ture and the reaction was monitored by TLC. After completion,
the reaction mixture was poured into 20 mL of saturated sodium
bicarbonate solution and extracted with dichloromethane. The
remaining organic phase was dried with anhydrous Na2SO4

and the solvent was distilled off under reduced pressure. The
resulting residues were purified by a simple wash with n-hexane
to afford the target products. The method employed for
synthesis is shown in Scheme-I.

FT-IR (KBr, νmax, cm–1): 3341 (-OH str.), 3025 (C–H str.,
asymmetric), 2935 (C–H str., symmetric), 1587, 1480, 1329,
1319, 1229, 1156, 1127, 1012, 831, 710 (C–S str.). 1H NMR
(400 MHz, DMSO-d6) δ (ppm): 2.09 (s, 3H), 2.23 (s, 3H),
6.98 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.0 Hz, 2H), 7.46-7.56
(m, 3H), 7.66 (dd, J = 7.6 Hz; 1.6 Hz, 1H), 11.09 (s, 1H). 13C
NMR DEPT-135 (100 MHz, DMSO-d6) δ (ppm): 136.0, 130.6,
130.3, 130.2, 130.1, 129.6, 127.9, 124.9, 20.3, 12.34. MS (m/z):
330.83

Method of crystallization: The pure 1-(2-chlorophenyl)-
3-methyl-4-(p-tolylthio)-1H-pyrazol-5-ol (0.12 g) was
dissolved in 20 mL of ethyl acetate. The resulting solution
was warmed with charcoal on a water bath and 1-3 drops of
DMF were added to the solution. The solution was filtered
while hot through Whatmann 2 filter paper. The solution was
kept in a stopper conical flask slightly opened. Crystals grew
after 8-10 days due to thin layer evaporation. They were filtered
and washed with chilled n-hexane.

All the chemicals were purchased from commercial supp-
liers and used without further purification. All the reactions
were monitored by thin layer chromatography (TLC). 1H NMR

and 13C NMR spectra were determined in DMSO-d6 on Bruker
Avance 400 MHz and 100 MHz spectrometer respectively and
reported in δ ppm. IR spectra were obtained with a FTIR Perkin
Elmer spectrum 100 spectrometer in KBr pellets with absor-
ption in cm–1. Melting points were measured using the capillary
method on µThermoCal10 (Analab Scientific Pvt. Ltd.) melting
point apparatus and are uncorrected. IKA RV 10 control rotary
evaporator was used to remove the solvents under vacuum.
X-ray diffraction crystal structure analysis was obtained on
the RIGAKU SCX mini X-ray Diffractometer. All measure-
ments were made on a Rigaku SCX mini Diffractometer using
graphite monochromated Mo-Kα radiation. Structure solution
and refinement was solved by direct methods [38-40] and
expanded using Fourier techniques. The non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were refined
using the riding model. The final cycle of full-matrix least-
squares refinement [41] on F2 was based on 3647 observed
reflections and 199 variable parameters and converged (largest
parameter shift was 0.00 times its esd) with unweighted and
weighted agreement factors of: R1 = Σ||Fo| - |Fc||/Σ|Fo| = 0.0499
and wR2 = [Σ(w(Fo

2 - Fc
2)2)/Σw(Fo

2)2]1/2 = 0.1496. The standard
deviation of an observation of unit weight was 1.07. The maxi-
mum and minimum peaks on the final difference Fourier map
corresponded to 0.54 and -0.45 e/Å3, respectively. Neutral atom
scattering factors were taken from Cromer and Waber [42].
Anomalous dispersion effects were included in Fcalc [43]; the
values for ∆f′ and ∆f″ were those of Creagh and McAuley
[44]. The values for the mass attenuation coefficients are those
of Creagh and Hubbell [45]. All calculations were performed
using the crystal structure [46] crystallographic software package
except for refinement, which was performed using SHELXL-
97 [47].

R E S U L T S A N D   D I S C U S S I O N

A colourless block crystal of C17H15N2OSCl having appro-
ximate dimensions of 0.540 mm × 0.490 mm × 0.320 mm
was mounted on a glass fiber. The data were collected at a
temperature of 20 ± 1 °C to a maximum 2θ value of 55.0°. The
crystal-to-detector distance was 52.00 mm and readout was
performed in the 0.146 mm pixel mode given the total of 540
oscillation images and its collection. A sweep of data was done
using ω oscillations from -120.0 to 60.0° in 1.0° steps, in which
the exposure rate and detector swing angle was 8.0 [s/°],
-30.80° respectively. Data were collected and processed using
Crystal-clear (Rigaku), In which the total 15922 reflections
were collected, out of them 3647 were unique (Rint = 0.0238)
and equivalent reflections. The linear absorption coefficient,
µ, for Mo-Kα radiation is 3.735 cm–1. Empirical absorption
correction was applied which resulted in transmission factors
ranging from 0.700 to 0.887. The details of crystal data and
refinement are given in Table-1.

Cell constants and an orientation matrix for data collection
corresponded to a primitive monoclinic cell with dimensions:
a = 9.6479(5) Å, b = 15.1233(8) Å, c = 11.4852(6) Å, β =
108.374(2)°, volume = 1590.4(2) Å3, Z = 4, f.w. = 330.83 and
the calculated density is 1.382 g/cm3. The reflection conditions
h0l: l = 2n and 0k0: k = 2n uniquely determine the space group
to be: P21/c (#14). The value of bond angles and bond lengths
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TABLE-1 
CRYSTAL DATA AND STRUCTURE REFINEMENT 

Empirical formula C17H15N2OSCl 
Formula weight 330.83 
Temperature 20 ± 1 °C 
Space group P21/c 
Crystal colour, Habit Colourless, block 
Crystal dimensions 0.540 mm × 0.490 mm × 0.320 mm 
Crystal system Monoclinic 
Lattice type Primitive 
Lattice parameters a = 9.6479(5) Å; b = 15.1233(8) Å 

c = 11.4852(6) Å; β = 108.374(2)° 
Volume 1590.4(2) Å3 
Space group P21/c (#14) 
Z 4 
Density (calculated) 1.382 g/cm3 
F000 688.00 
Reflections collected 15922 
Independent reflections 3647 were unique (Rint = 0.0238) 
Refinement method Full-matrix least-squares on F2 
Theta range for data collection 2.0°-55.0° 
µ (MoKα) 3.735 cm–1 
Reflections/variables 3647/199 
Reflection ratio 18.33 
Final R indices [I>2.00σ(I)] 
0.0499 (R1) 

Final R indices [I>2.00σ(I)] 0.0499 
(R1) 

R indices (all data) R = 0.0570 
and wR2 = 0.01496 

R indices (all data) R = 0.0570 and 
wR2 = 0.01496 

Largest diff. peak and hole 0.540 and -0.450 e Å–3 

 

were described in Table-2. In which, the C–S and C–O bond
distances 1.740 Å and 1.251 Å are in good agreement with
literature values of 1.744 Å [48] and 1.255 Å [49], respectively.
The C–S bond length and bond angle of C2-S1-C4 (101.97°)
also confirmed the bond formation of C2-S1-C4 (Table-2).

In the title compound the pyrazole ring shows the penta-
gonal-planer conformation with perpendicular to the phenyl
rings was also confirmed by the value of torsion angle between
the atoms of C3-N1-N2-C1 = -1.4(2)°, N1-N2-C1-C2 =
1.3(3)°, N2-N1-C3-C2 = 0.9(2)°, N2-C1-C2-C3 = -0.8(3)° and
C1-C2-C3-N1 = -0.1(3)° (Table-3). The torsion angle about
C2–S1–C4–C5 being -165.36(17)° and that about N1–C11–
C12–C13 is 176.77(3)° shows antiperiplanar conformation.
The atoms C3–N1–C11–C12 and C1-C2-S1-C4 gives syn-
clinal conformation with a value of -64.7(4)° and -98.32(18)°,
respectively.

Subsequent refinements were carried out with equivalent
thermal parameters for non-hydrogen atoms and isotropic
temperature factors for the hydrogen atoms, which were placed
at chemically acceptable positions. The hydrogen atoms were
allowed to ride on their parent atoms (Table-4).

The ORTEP of the molecule with thermal ellipsoids drawn
at 50 % probability is shown in Fig. 1. The structure exhibits

Fig. 1. ORTEP diagram with thermal ellipsoids drawn at 50 % probability
(CCDC: 1561633)

TABLE-2 
BOND LENGTHS (Å) AND BOND ANGLES (°) 

Bond lengths (Å) Bond angles (°) 

Atom Distance Atom Angle Atom Angle 
C11-C12 1.725(3) C2-S1-C4 101.97(10) C2-S1-C4 101.97(10) 

S1-C4 1.786(3) N2-N1-C11 121.23(17) N2-N1-C11 121.23(17) 
N1-N2 1.380(3) N1-N2-C1 108.37(17) N1-N2-C1 108.37(17) 
N1-C11 1.422(3) N2-C1-C21 120.7(2) N2-C1-C2 109.48(19) 
C1-C2 1.381(4) S1-C2-C1 127.60(17) C2-C1-C21 129.80(19) 
C2-C3 1.423(3) C1-C2-C3 107.57(17) S1-C2-C3 124.59(17) 
C4-C9 1.388(4) O1-C3-C2 133.12(19) O1-C3-N1 121.96(19) 
C6-C7 1.387(5) S1-C4-C5 118.15(19) N1-C3-C2 104.91(19) 

C7-C10 1.510(5) C5-C4-C9 118.8(2) S1-C4-C9 123.08(16) 
C11-C12 1.389(3) C5-C6-C7 121.5(3) C4-C5-C6 120.2(3) 
C12-C13 1.387(4) C6-C7-C10 121.8(3) C6-C7-C8 117.6(3) 
C14-C15 1.371(4) C7-C8-C9 121.5(3) C8-C7-C10 120.6(3) 

S1-C2 1.7406(19) N1-C11-C12 120.84(17) C4-C9-C8 120.4(3) 
O1-C3 1.251(3) C12-C11-C16 119.72(19) N1-C11-C16 119.42(19) 
N1-C3 1.380(3) Cl1-C12-C13 119.53(18) Cl1-C12-C11 120.64(17) 
N2-C1 1.327(3) C12-C13-C14 119.9(3) C11-C12-C13 119.8(2) 
C1-C21 1.487(4) C14-C15-C16 120.4(3) C13-C14-C15 120.5(3) 
C4-C5 1.388(3) N2-N1-C3 109.66(17) C11-C16-C15 119.7(3) 
C5-C6 1.387(4) C3-N1-C11 127.43(19) N2-C1-C2 109.48(19) 
C7-C8 1.387(4) N2-C1-C21 120.7(2) C2-C1-C21 129.80(19) 
C8-C9 1.383(4) O1-C3-N1 121.96(19) S1-C2-C3 124.59(17) 

C11-C16 1.379(3) N1-C3-C2 104.91(19) – – 
C13-C14 1.365(4) – – – – 
C15-C16 1.383(4) – – – – 
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TABLE-3 
TORSION ANGLES (°) 

Atom 1 Atom 2 Atom 3 Atom 4 Torsion 
angle 

Atom 1 Atom 2 Atom 3 Atom 4 Torsion 
angle 

C2 S1 C4 C5 -165.36(17) C2 S1 C4 C9 14.1(3) 
C4 S1 C2 C1 -98.32(18) C4 S1 C2 C3 75.27(19) 
N2 N1 C3 O1 -179.68(18) N2 N1 C3 C2 0.9(2) 
C3 N1 N2 C1 -1.4(2) N2 N1 C11 C12 99.0(2) 
N2 N1 C11 C16 -82.4(3) C11 N1 N2 C1 -167.65(16) 
C3 N1 C11 C12 -64.7(4) C3 N1 C11 C16 114.0(3) 
C11 N1 C3 O1 -14.5(4) C11 N1 C3 C2 166.07(19) 
N1 N2 C1 C2 1.3(3) N1 N2 C1 C21 -178.11(15) 
N2 C1 C2 S1 173.71(16) N2 C1 C2 C3 -0.8(3) 
C21 C1 C2 S1 -6.9(4) C21 C1 C2 C3 178.6(2) 
S1 C2 C3 O1 5.9(4) S1 C2 C3 N1 -174.76(14) 
C1 C2 C3 O1 -179.4(3) C1 C2 C3 N1 -0.1(3) 
S1 C4 C5 C6 -179.58(17) S1 C4 C9 C8 -179.11(17) 
C5 C4 C9 C8 0.3(4) C9 C4 C5 C6 1.0(4) 
C4 C5 C6 C7 -1.3(5) C5 C6 C7 C8 0.2(5) 
C5 C6 C7 C10 -179.9(3) C6 C7 C8 C9 1.1(5) 
C10 C7 C8 C9 -178.8(3) C7 C8 C9 C4 -1.4(5) 
N1 C11 C12 Cl1 -2.6(4) N1 C11 C12 C13 176.77(19) 
N1 C11 C16 C15 -177.3(2) C12 C11 C16 C15 1.3(4) 
C16 C11 C12 Cl1 178.8(2) C16 C11 C12 C13 -1.9(4) 
Cl1 C12 C13 C14 -179.71(19) C11 C12 C13 C14 0.9(4) 
C12 C13 C14 C15 0.6(5) C13 C14 C15 C16 -1.1(5) 
C14 C15 C16 C11 0.1(5) – – – – – 

 
inter-molecular hydrogen bonds of the type O–H---N. O1–
H1---N2 has a length of 2.619(3) Å with an angle of 148.64°
along with the symmetry codes X, -Y+1/2, Z+1/2-1 respec-
tively (Fig. 2). The stability of the crystal structure can be
accounted by the hydrogen bonds.

Conclusion

In conclusion, we have developed an efficient and simple
protocol for the synthesis of N-chlorosuccinimide mediated
sulfenylated pyrazoles at room temperature. N-Chlorosucci-
nimide was demonstrated to facilitate this transformation
possibly by generating more reactive phenyl hypochlorothioite
in situ from thiophenols. The synthesized product was charac-

terized by spectroscopic techniques and X-ray diffraction
studies. The X-ray studies shows that the inter-molecular
hydrogen bonding of the type O–H---N and the pyrazole ring
gives pentagonal-planer conformation perpendicular to the
phenyl rings.
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Possible hydrogen bonds (Å):
Donor        H           Acceptor   
O1             H1         N2   1

D---A         D–H      H---A        D–H---A
2.619(3)    0.82      1.88          148.64 

Symmetry operators:
X, -Y+1/2, Z+1/2-1

Fig. 2. Possible hydrogen bonds, symmetry operators and crystal packing arrangement view along the b-axis showing N-H---O hydrogen bonds
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TABLE-4 
ATOMIC COORDINATES AND EQUIVALENT THERMAL 

PARAMETERS OF THE NON-HYDROGEN ATOMS 

Atom x y z Beq 
Cl1 0.66727(7) 0.05292(5) 0.47096(7) 5.05(2) 
S1 0.59025(7) 0.36797(4) 0.27472(5) 3.72(2) 
O1 0.8377(2) 0.2085(1) 0.3446(2) 4.18(4) 
N1 0.8345(2) 0.2229(1) 0.5432(2) 2.96(3) 
N2 0.7647(2) 0.2753(1) 0.6058(2) 2.89(3) 
C1 0.6806(3) 0.3326(2) 0.5273(2) 2.84(4) 
C2 0.6908(3) 0.3178(2) 0.4117(2) 2.97(4) 
C3 0.7903(3) 0.2467(2) 0.4210(2) 2.92(4) 
C4 0.4520(3) 0.2873(2) 0.2103(2) 3.32(4) 
C5 0.3707(3) 0.2952(2) 0.0873(2) 3.92(5) 
C6 0.2616(3) 0.2345(2) 0.0335(3) 4.51(6) 
C7 0.2325(3) 0.1639(2) 0.0994(3) 4.32(5) 
C8 0.3162(3) 0.1561(2) 0.2217(3) 4.31(5) 
C9 0.4234(3) 0.2171(2) 0.2771(3) 3.98(5) 
C10 0.1140(4) 0.0974(3) 0.0413(4) 6.03(7) 
C11 0.9096(3) 0.1447(2) 0.5966(2) 2.75(4) 
C12 0.8443(3) 0.0623(2) 0.5678(2) 3.19(4) 
C13 0.9223(3) -0.0135(2) 0.6163(3) 4.00(5) 
C14 1.0622(4) -0.0066(2) 0.6934(3) 4.44(5) 
C15 1.1260(3) 0.0747(2) 0.7243(3) 4.57(6) 
C16 1.0502(3) 0.1508(2) 0.6761(2) 3.70(4) 
C21 0.5948(3) 0.4000(2) 0.5694(3) 4.12(5) 

Beq = 8/3 π2 (U11(aa*)2 + U22(bb*)2 + U33(cc*)2 + 2U12(aa*bb*)cos γ + 
2U13(aa*cc*)cos β + 2U23(bb*cc*)cos α) 
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