Main Article Content

Abstract

An essential step in network modelling is to validate the network model. Petri net theory provides algorithms and methods, which can be applied directly to metabolic network modelling and analysis in order to validate the model. This paper describes the thriving application of Petri net theory for model validation of biosynthesis of menthol using the well-established Petri net analysis technique of place and transition invariants. Because of the complexity of metabolic networks and their regulation, formal modelling is a useful method to improve the understanding of these systems. A petri net representation, its validation and simulation of biosynthesis of menthol from geranyl diphosphate (GPP) has been performed with the objective of understating new insights of the structure of this pathway affecting the synthesis of menthol. The model has been validated for its P-invariant and T-invariant. T-invariant analysis suggest absence of any loop in the net which restore the initial state suggesting all reactions to be only forward. The net is covered by positive P-invariants and bounded. The net is utilized to simulate the time (pt) with concentrations of GPP, (−)-limonene, (+)-pulegone, (−)-menthone and (−)-menthol. Dimethylallyl diphosphate and isopentenyl diphosphate were the main precursors for this biosynthesis. Biological data needed for simulation where obtained from extensive survey of literature. The results were shown graphically and the nature of graphs represent the variation of concentrations with time.

Keywords

Petri Net Simulation Modelling Menthol biosynthesis P-invariant T-invariant

Article Details

How to Cite
Dubey, S., Joshi, S., Dwivedi, G., & Prasad, R. (2020). Application of Petri Net Theory for Modelling and Validation of Menthol Biosynthesis. Asian Journal of Organic & Medicinal Chemistry, 5(4), 312–318. https://doi.org/10.14233/ajomc.2020.AJOMC-P297

References

  1. H. Kitano, Systems Biology: A Brief Overview, Sci., 295, 1662 (2002); https://doi.org/10.1126/science.1069492
  2. L.J. Sweetlove, R.L. Last and A.R. Fernie, Predictive Metabolic Engineering: A Goal for Systems Biology, Plant Physiol., 132, 420 (2003); https://doi.org/10.1104/pp.103.022004
  3. L.J. Sweetlove and A.R. Fernie, Regulation of Metabolic Networks: Understanding Metabolic Complexity in the Systems Biology Era, New Phytol., 168, 9 (2005); https://doi.org/10.1111/j.1469-8137.2005.01513.x
  4. N. Mimica-Duke, B. Bozin, M. Sokovic, B. Mihajlovic and M. Matavulj, Antimicrobial and Antioxidant Activities of Three Mentha Species Essential Oils, Planta Med., 69, 413 (2003); https://doi.org/10.1055/s-2003-39704
  5. A. Schuhmacher, J. Reichling and P. Schnitzler, Virucidal Effect of Peppermint Oil on the Enveloped Viruses Herpes Simplex Virus Type 1 and Type 2 in vitro, Phytomedicine, 10, 504 (2003); https://doi.org/10.1078/094471103322331467
  6. A.E. Edris and E.S. Farrag, Antifungal Activity of Peppermint and Sweet Basil Essential Oils and their Major Aroma Constituents on Some Plant Pathogenic Fungi from the Vapor Phase, Nahrung, 47, 117 (2003); https://doi.org/10.1002/food.200390021
  7. H.J. Dorman, M. Kosar, K. Kahlos, Y. Holm and R. Hiltunen, Antioxidant Properties and Composition of Aqueous Extracts from Mentha Species, Hybrids, Varieties and Cultivars, J. Agric. Food Chem., 51, 4563 (2003); https://doi.org/10.1021/jf034108k
  8. A. Kumar and S. Chattopadhyay, DNA Damage Protecting Activity and Antioxidant Potential of Pudina Extract, Food Chem., 100, 1377 (2007); https://doi.org/10.1016/j.foodchem.2005.12.015
  9. R.M. Samarth and A. Kumar, Radioprotection of Swiss Albino Mice by Plant Extract Mentha piperita (Linn.), J. Radiat. Res., 44, 101 (2003); https://doi.org/10.1269/jrr.44.101
  10. S.S. Mahmoud and R.B. Croteau, Metabolic Engineering of Essential Oil Yield and Composition in Mint by Altering Expression of Deoxyxylulose Phosphate Reductoisomerase and Menthofuran Synthase, Proc. Natl. Acad. Sci. USA, 98, 8915 (2001); https://doi.org/10.1073/pnas.141237298
  11. A. Chakraborty and S. Chattopadhyay, Stimulation of Menthol Produc-tion in Mentha piperita Cell Culture, In Vitro Cell. Dev. Biol. Plant, 44, 518 (2008); https://doi.org/10.1007/s11627-008-9145-y
  12. V.N. Reddy, M.L. Mavrovouniotis and M.N. Liebman, Petri net Representation in Metabolic Pathways, Proc. Int. Conf. Intell. Syst. Mol. Biol., 1, pp 328-336 (1993).
  13. K.H.C. Baser, M. Kurkcuoglu, G. Tarimcilar and G. Kaynak, Essential Oils of Mentha Species from Northern Turkey, J. Essent. Oil Res., 11, 579 (1999); https://doi.org/10.1080/10412905.1999.9701218
  14. A.H. Hawari and Z.A. Mohamed-Hussein, Simulation of a Petri net-based Model of the Terpenoid Biosynthesis Pathway, BMC Bioinformat., 11, 83 (2010); https://doi.org/10.1186/1471-2105-11-83
  15. I. Koch, B.H. Junker and M. Heiner, Application of Petri net Theory for Modelling and Validation of the Sucrose Breakdown Pathway in the Potato Tuber, Bioinformatics, 21, 1219 (2005); https://doi.org/10.1093/bioinformatics/bti145
  16. W.C. Chang, H. Song, H.W. Liu and P. Liu, Current Development in Isoprenoid Precursor Biosynthesis and Regulation, Curr. Opin. Chem. Biol., 17, 571 (2013); https://doi.org/10.1016/j.cbpa.2013.06.020
  17. M. Loolaie, N. Moasefi, H. Rasouli and H. Adibi, Peppermint and Its Functionality: A Review, iMedPub J., 8, 54 (2017); https://doi.org/10.4172/1989-8436.100053
  18. D. Gilbert, H. Fuss, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M.J. Kurth, C.S. Downes and W. Dubitzky, Computational Methodologies for Modelling, Analysis and Simulation of Signalling Networks, Brief. Bioinform., 7, 339 (2006); https://doi.org/10.1093/bib/bbl043
  19. I. Goryanin, T.C. Hodgman and E. Selkov, Bioinformatics, 15, 749 (1999); https://doi.org/10.1093/bioinformatics/15.9.749
  20. K. Yang, W. Ma, H. Liang, Q. Ouyang, C. Tang and L. Lai, Dynamic Simulations on the Arachidonic Acid Metabolic Network, PLOS Comput. Biol., 3, 523 (2007); https://doi.org/10.1371/journal.pcbi.0030055
  21. R.J. Orton, O.E. Sturm, V. Vyshemirsky, M. Calder, D.R. Gilbert and W. Kolch, Computational Modelling of the Receptor-Tyrosine-Kinase-Activated MAPK Pathway, Biochem. J., 392, 249 (2005); https://doi.org/10.1042/BJ20050908
  22. H. de Jong, Modeling and Simulation of Genetic Regulatory Systems: A Literature Review, J. Comput. Biol., 9, 67 (2002); https://doi.org/10.1089/10665270252833208
  23. J.S. Oliveira, C.G. Bailey, J.B. Jones-Oliveira, D.A. Dixon, D.W. Gull and M.L. Chandler, A Computational Model for the Identification of Biochemical Pathways in the Krebs Cycle, J. Comput. Biol., 10, 57 (2003); https://doi.org/10.1089/106652703763255679
  24. I. Koch, M. Heiner, B.H. Junker and F. Schreiber, J. Anat., 215, 139 (2009).
  25. A. Doi, S. Fujita, H. Matsuno, M. Nagasaki and S. Miyano, Constructing Biological Pathway Models with Hybrid Functional Petri Nets, In Silico Biol., 4, 271 (2004).
  26. S. Grunwald, A. Speer, J. Ackermann and I. Koch, Petri net Modelling of Gene Regulation of the Duchenne Muscular Dystrophy, Biosystems, 92, 189 (2008); https://doi.org/10.1016/j.biosystems.2008.02.005
  27. A. Sackmann, M. Heiner and I. Koch, Application of Petri net based Analysis Techniques to Signal Transduction Pathways, BMC Bioinformat., 7, 482 (2006); https://doi.org/10.1186/1471-2105-7-482
  28. D. Gilbert, H. Fuss, X. Gu, R. Orton, S. Robinson, V. Vyshemirsky, M.J. Kurth, C.S. Downes and W. Dubitzky, Computational Methodologies for Modelling, Analysis and Simulation of Signalling Networks, Brief. Bioinform., 7, 339 (2006); https://doi.org/10.1093/bib/bbl043
  29. C.A. Petri, Communication with Automata, New York: Griffiss Air Force Base, Tech. Rep. RADC-TR, vol. 1, pp. 165-377 (1966).
  30. C. Capellman and H. Dibold, ed.: M.M. Ajmone, Petri Net based Specifications of Services in an Intelligent Network-Experiences Gained from a Test Case Application, In: Application and Theory of Petri Nets 1993. ICATPN 1993. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol. 691, 542 (1993); https://doi.org/10.1007/3-540-56863-8_66
  31. G. Chehaiber, In Proceedings of 11th International Conference on Application and Theory of Petri Nets, Paris, France: Validation of Phase Executed Protocols Modeled with Coloured Petri net, Scientific Publication No. 84 (1990).
  32. M. Diaz, in eds.: W. Brauer, W. Reisig and G. Rozenberg, Lecture Notes in Computer Science, vol. 255: Petri Nets: Applications and Relationships to Other Models of Concurrency, Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, September 1986, pages 135-170. Springer-Verlag (1987).
  33. T. Murata, Proc. IEEE, 77, 541 (1989); https://doi.org/10.1109/5.24143
  34. M.A. Marsan, ed.: G. Rogenberg, In Advances in Petri nets 1989, covers the 9thEuropean Workshop on Applications and Theory in Petri net- Selected papers Lecture Notes in Computer Science Stochastic Petri nets: An Elementary Introduction, vol. 424, pp. 1-29 (1990).
  35. H. Matsuno, A. Doi, M. Nagasaki and S. Miyano, In Pacific Symposium on Biocomputing: Hybrid Petri net Representation Gene Regulatory Network, 5, pp. 338-349 (1999).
  36. M. Nagasaki, A. Doi, H. Mutsuno and S. Miyano, Genomic Object Net: I. A Platform for Modelling and Simulating Biopathways, Appl. Bioinformat., 1, 181 (2003).
  37. S. Tasaki, M. Nagasaki, M. Oyama, H. Hata, K. Ueno, R. Yoshida, T. Higuchi, S. Sugano and S. Miyano, Modeling and Estimation of Dynamic EGFR Pathway by Data assimilation Approach using Time Series Proteomic Data, Genome Informatics, 17, 226 (2006).
  38. Y. Rahimi, A. Taleei and M. Ranjbar, Changes in the Expression of Key Genes involved in the Biosynthesis of Menthol and Menthofuran in Mentha Piperita L. under Drought Stress, Acta Physiol. Plant., 39, 203 (2017); https://doi.org/10.1007/s11738-017-2502-x
  39. J.L. Ian Wee, Y. Yang and L. Hai, In IEEE International Conference on Controle and Automation Christ Church, New Zeeland, Validation of Petri net apoptosis using P-Invariant analysis, Dec 9-11 (2009).
  40. M. Heiner, I. Koch, J. Cortadilla and W. Reisig, eds., In ICATPN 2004, Petri net-Based Model Validation in System Biology, Springer-Verlag: Berlin Heidellerg, LNCS 3099, pp. 216-237 (2004).
  41. https://osdn.net/projects/sfnet_pipe2/downloads/PIPEv4/PIPEv4.3.0/PIPEv4.3.0.zip/