Main Article Content
Abstract
Vision process involves the participation of two types of retinal photoreceptor cells: rod cells respond to dim light while cone cells respond to bright light and colours. The visual pigments in both types of photoreceptor cells contain the common chromophore, 11-cis-retinal, linked through a Schiff base linkage to the opsin protein, a member of G-protein coupled receptor (GPCR) family, composed of 7-transmembrane helices (a 7TM receptor). Rhodopsin is the visual pigment present in the rod cells while three distinct types of visual pigments known as photopsins (red cones, green cones and blue cones absorbing red, blue and green parts of the visible spectrum respectively) are present in the cone cells. Absorption of light by the visual pigment causes the photoexcitation followed by photoisomerization, 11-cis-retinal (Z) to all-trans-retinal (E) with a high quantum yield through a number of reactive intermediates characterized by low temperature and picosecond (ps) time resolved spectroscopies coupled with femtosecond spectroscopy. This photoisomerization leads to a change in the conformation of opsin GPCR and a signal transduction cascade by activating transducin, a heterotrimeric G-protein, to breakdown the cGMP to close the cGMP-gated cation channels resulting in hyperpolarization of the photoreceptor cell. This action potential creates a nerve signal that is transmitted to the brain to produce the sense of vision. The photoisomerized pigment undergoes rapidly hydrolysis to produce the opsin protein and all trans-retinal, which can be reconverted enzymatically to 11-cis-retinal for recharging opsin to generate the active visual pigment to maintain the vision cycle (Wald cycle). This brief review highlights the state of our understanding of the biology behind the art of vision in humans and other organisms.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- G. Wald, The Molecular Basis of Visual Excitation, Nature, 219, 800 (1968); https://doi.org/10.1038/219800a0
- R.R. Rando, The Biochemistry of the Visual Cycle, Chem. Rev., 101, 1881 (2001); https://doi.org/10.1021/cr960141c
- H. Kandori, Y. Shichida and T. Yoshizawa, Photoisomerization in Rhodopsin, Biochemistry, 66, 1197 (2001); https://doi.org/10.1023/A:1013123016803
- S.O. Smith, Structure and Activation of the Visual Pigment Rhodopsin, Annu. Rev. Biophys., 39, 309 (2010); https://doi.org/10.1146/annurev-biophys-101209-104901
- B. Jastrzebska, Y. Tsybovsky and K. Palczewski, Complexes between Photoactivated Rhodopsin and Transducin: Progress and Questions, Biochem. J., 428, 1 (2010); https://doi.org/10.1042/BJ20100270
- O.P. Ernst, D.T. Lodowski, M. Elstner, P. Hegemann, L.S. Brown and H. Kandori, Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms, Chem. Rev., 114, 126 (2014); https://doi.org/10.1021/cr4003769
- P.D. Kiser, M. Golczak and K. Palczewski, Chemistry of the Retinoid (Visual) Cycle, Chem. Rev., 114, 194 (2014); https://doi.org/10.1021/cr400107q
- F. Gonzalez-Fernandez, B. Betts-Obregon, B. Yust, J. Mimun, D. Sung, D. Sardar and A.T. Tsin, Interphotoreceptor Retinoid-Binding Protein Protects Retinoids from Photodegradation, Photochem. Photobiol., 91, 371 (2015); https://doi.org/10.1111/php.12416
- C. Schnedermann, X. Yang, M. Liebel, K.M. Spillane, J. Lugtenburg, I. Fernández, A. Valentini, I. Schapiro, M. Olivucci, P. Kukura and R.A. Mathies, Evidence for a Vibrational Phase-Dependent Isotope Effect on the Photochemistry of Vision, Nat. Chem., 10, 449 (2018); https://doi.org/10.1038/s41557-018-0014-y
- A. Morshedian, J.J. Kaylor, S.Y. Ng, A. Tsan, R. Frederiksen, T. Xu, L. Yuan, A.P. Sampath, R.A. Radu, G.L. Fain and G.H. Travis, Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells, Neuron, 102, 1172 (2019); https://doi.org/10.1016/j.neuron.2019.04.004
- J. Zhang, E.H. Choi, A. Tworak, D. Salom, H. Leinonen, C.L. Sander, T.V. Hoang, J.T. Handa, S. Blackshaw, G. Palczewska, P.D. Kiser and K. Palczewski, Photic Generation of 11-cis-Retinal in Bovine Retinal Pigment Epithelium, J. Biol. Chem., 294, 19137 (2019); https://doi.org/10.1074/jbc.RA119.011169
- E.H. Choi, A. Daruwalla, S. Suh, H. Leinonen and K. Palczewski, Retinoids in the Visual Cycle: Role of the Retinal G Protein-Coupled Receptor, J. Lipid Res., 62, 100040 (2021); https://doi.org/10.1194/jlr.TR120000850
- P.D. Kiser, M. Golczak, A. Maeda and K. Palczewski, Key Enzymes of the Retinoid (Visual) Cycle in Vertebrate Retina, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1821, 137 (2012); https://doi.org/10.1016/j.bbalip.2011.03.005
- A.K. Das, M. Das and A. Das, Biophysical, Bioinorganic & Bioinorganic Chemistry, Books & Allied (P) Ltd.: Kolkata, India, Edn. 2 (2021). ISBN: 978-81-948455-2-2.
- U. Satyanaryana, Biochemistry, Books & Allied (P) Ltd.: Kolkata, India, Edn. 2 (2002). ISBN: 81-87134-80-1
- T. Ebrey and Y. Koutalos, Vertebrate Photoreceptors, Prog. Retin. Eye Res., 20, 49 (2001); https://doi.org/10.1016/S1350-9462(00)00014-8
- D. Mustafi, A.H. Engel and K. Palczewski, Structure of Cone Photoreceptors, Prog. Retin. Eye Res., 28, 289 (2009); https://doi.org/10.1016/j.preteyeres.2009.05.003
- M. Yang and H.K.W. Fong, Synthesis of the All-trans-Retinal Chromophore of Retinal G Protein-coupled Receptor Opsin in Cultured Pigment Epithelial Cells, J. Biol. Chem., 277, 3318 (2002); https://doi.org/10.1074/jbc.M108946200
- J.K. Bowmaker and H.J. Dartnall, Visual Pigments of Rods and Cones in a Human Retina, J. Physiol., 298, 501 (1980); https://doi.org/10.1113/jphysiol.1980.sp013097
- A. Tsin, B. Betts-Obregon and J. Grigsby, Visual Cycle Proteins: Structure, Function and Roles in Human Retinal Disease, J. Biol. Chem., 293, 13016 (2018); https://doi.org/10.1074/jbc.AW118.003228
- K. Palczewski and P.D. Kiser, Shedding New Light on the Generation of the Visual Chromophore, Proc. Natl. Acad. Sci. USA, 117, 19629 (2020); https://doi.org/10.1073/pnas.2008211117
- J.M. Berg, J.L. Tymoczko and L. Stryer, Biochemistrty, W.H. Freeman and Company: New York, Edn. 7 (2012),
- V.Y. Arshavsky, T.D. Lamb and E.N. Pugh Jr., G Proteins and Phototransduction, Annu. Rev. Physiol., 64, 153 (2002); https://doi.org/10.1146/annurev.physiol.64.082701.102229
- K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I.L. Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto and M. Miyano, Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor, Science, 289, 739 (2000); https://doi.org/10.1126/science.289.5480.739
- K. Palczewski, G Protein–Coupled Receptor Rhodopsin, Annu. Rev. Biochem., 75, 743 (2006); https://doi.org/10.1146/annurev.biochem.75.103004.142743
- X.E. Zhou, K. Melcher and H.E. Xu, Structure and Activation of Rhodopsin, Acta Pharmacol. Sin., 33, 291 (2012); https://doi.org/10.1038/aps.2011.171
- G. Wald and R. Hubbard, The Synthesis of Rhodopsin from Vitamin A1, Proc. Natl. Acad. Sci. USA, 36, 92 (1950); https://doi.org/10.1073/pnas.36.2.92
- R. Kawaguchi, J. Yu, J. Honda, J. Hu, J. Whitelegge, P. Ping, P. Wiita, D. Bok and H. Sun, A Membrane Receptor for Retinol Binding Protein Mediates Cellular Uptake of Vitamin A, Science, 315, 820 (2007); https://doi.org/10.1126/science.1136244
- J.C. Saari, Vitamin A Metabolism in Rod and Cone Visual Cycles, Annu. Rev. Nutr., 32, 125 (2012); https://doi.org/10.1146/annurev-nutr-071811-150748
- J.C. Saari, Eds.: M. Asson-Batres and C. Rochette-Egly, Vitamin A and Vision, The Biochemistry of Retinoid Signaling II; In: Subcellular Biochemistry, Springer, Dordrecht, vol. 81, p. 231 (2016); https://doi.org/10.1007/978-94-024-0945-1_9
- H. Tsukamoto and A. Terakita, Diversity and Functional Properties of Bistable Pigments, Photochem. Photobiol. Sci., 9, 1435 (2010); https://doi.org/10.1039/c0pp00168f
- D. Osorio and M. Vorobyev, Photoreceptor Sectral Sensitivities in Terrestrial Animals: Adaptations for Luminance and Colour Vision, Proc. R. Soc. B Biol. Sci., 272, 1745 (2005); https://doi.org/10.1098/rspb.2005.3156
- T. Mizukami, H. Kandori, Y. Shichida, A.H. Chen, F. Derguini, C.G. Caldwell, C.F. Biffe, K. Nakanishi and T. Yoshizawa, Photoisomerization Mechanism of the Rhodopsin Chromophore: Picosecond Photolysis of Pigment Containing 11-cis-Locked Eight-Membered Ring Retinal, Proc. Natl. Acad. Sci. USA, 90, 4072 (1993); https://doi.org/10.1073/pnas.90.9.4072
- J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, Edn. 2 (2012). ISBN: 978-0-19-927029-3.
- H.J.A. Dartnall, The Photosensitivities of Visual Pigments in the Presence of Hydroxylamine, Vision Res., 8, 339 (1968); https://doi.org/10.1016/0042-6989(68)90104-1
- R. Frederiksen, S. Nymark, A.V. Kolesnikov, J.D. Berry, L. Adler IV, Y. Koutalos, V.J. Kefalov and M.C. Cornwall, Rhodopsin Kinase and Arrestin Binding Control the Decay of Photoactivated Rhodopsin and Dark Adaptation of Mouse Rods, J. Gen. Physiol., 148, 1 (2016); https://doi.org/10.1085/jgp.201511538
- T.D. Lamb and E.N. Pugh Jr., Dark Adaptation and the Retinoid Cycle of Vision, Prog. Retin. Eye Res., 23, 307 (2004); https://doi.org/10.1016/j.preteyeres.2004.03.001
- A. Muniz, E.T. Villazana-Espinoza, A.L. Hatch, S.G. Trevino, D.M. Allen and A.T. Tsin, A Novel Cone Visual Cycle in the Cone-dominated Retina, Exp. Eye Res., 85, 175 (2007); https://doi.org/10.1016/j.exer.2007.05.003
- A. Muñiz, W.A. Greene, M.L. Plamper, J.H. Choi, A.J. Johnson, A.T. Tsin and H.C. Wang, Retinoid Uptake, Processing, and Secretion in Human iPS-RPE Support the Visual Cycle, Invest. Ophthalmol. Vis. Sci., 55, 198 (2014); https://doi.org/10.1167/iovs.13-11740
- A. Muniz, B.S. Betts, A.R. Trevino, K. Buddavarapu, R. Roman, J.X. Ma and A.T. Tsin, Evidence for Two Retinoid Cycles in the Cone-Dominated Chicken Eye, Biochemistry, 48, 6854 (2009); https://doi.org/10.1021/bi9002937
- P. Ala-Laurila, A.V. Kolesnikov, R.K. Crouch, S.A. Shukolyukov, E. Tsina, V.I. Govardovskii, Y. Koutalos, B. Wiggert, M.E. Estevez and M.C. Cornwall, Visual Cycle: Dependence of Retinol Production and Removal on Photoproduct Decay and Cell Morphology, J. Gen. Physiol., 128, 153 (2006); https://doi.org/10.1085/jgp.200609557
- G. Wolf, The Visual Cycle of the Cone Photoreceptors of the Retina, Nutr. Rev., 62, 283 (2004); https://doi.org/10.1111/j.1753-4887.2004.tb00053.x
- J.S. Wang and V.J. Kefalov, The Cone-Specific Visual Cycle, Prog. Retin. Eye Res., 30, 115 (2011); https://doi.org/10.1016/j.preteyeres.2010.11.001
- G. Wolf, Function of the Protein Rpe65 in the Visual Cycle, Nutr. Rev., 63, 97 (2005); https://doi.org/10.1111/j.1753-4887.2005.tb00127.x
- P.D. Kiser and K. Palczewski, Membrane-Binding and Enzymatic Properties of RPE65, Prog. Retin. Eye Res., 29, 428 (2010); https://doi.org/10.1016/j.preteyeres.2010.03.002
- R.A. Radu, J. Hu, J. Peng, D. Bok, N.L. Mata and G.H. Travis, etinal Pigment Epithelium-Retinal G Protein Receptor-Opsin Mediates Light-dependent Translocation of All-trans-retinyl Esters for Synthesis of Visual Chromophore in Retinal Pigment Epithelial Cells, J. Biol. Chem., 283, 19730 (2008); https://doi.org/10.1074/jbc.M801288200
- M.L. Batten, Y. Imanishi, T. Maeda, D.C. Tu, A.R. Moise, D. Bronson, D. Possin, R.N. Van Gelder, W. Baehr and K. Palczewski, Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver, J. Biol. Chem., 279, 10422 (2004); https://doi.org/10.1074/jbc.M312410200
- A. Wenzel, V. Oberhauser, E.N. Pugh Jr., T.D. Lamb Jr., C. Grimm, M. Samardzija, E. Fahl, M.W. Seeliger, C.E. Reme and J. von Lintig, The Retinal G Protein-coupled Receptor (RGR) Enhances Isomerohydrolase Activity Independent of Light, J. Biol. Chem., 280, 29874 (2005); https://doi.org/10.1074/jbc.M503603200
- M. Jin, S. Li, W.N. Moghrabi, H. Sun and G.H. Travis, Rpe65 Is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium, Cell, 122, 449 (2005); https://doi.org/10.1016/j.cell.2005.06.042
- G. Moiseyev, Y. Chen, Y. Takahashi, B. X. Wu and J. X. Ma, RPE65 is the Isomerohydrolase in the Retinoid Visual Cycle, Proc. Natl. Acad. Sci., (USA), 102, 12413 (2005); https://doi.org/10.1073/pnas.0503460102
- A.K. Das, M, Das and A. Das, Bioinorganic Chemistry, Books & Allied (P) Ltd, Kolkata, India, Edn. 2 (2020); ISBN: 978-81-946982-1-0.
- L. Hofmann and K. Palczewski, Advances in Understanding the Molecular Basis of the First Steps in Color Vision, Prog. Retin. Eye Res., 49, 46 (2015); https://doi.org/10.1016/j.preteyeres.2015.07.004
- G.H. Travis, M. Golczak, A.R. Moise and K. Palczewski, Diseases Caused by Defects in the Visual Cycle: Retinoids as Potential Therapeutic Agents, Annu. Rev. Pharmacol. Toxicol., 47, 469 (2007); https://doi.org/10.1146/annurev.pharmtox.47.120505.105225
- P.D. Kiser and K. Palczewski, Retinoids and Retinal Diseases, Annu. Rev. Vis. Sci., 2, 197 (2016); https://doi.org/10.1146/annurev-vision-111815-114407
- P.D. Kiser and K. Palczewski, Pathways and Disease-Causing Alterations in Visual Chromophore Production for Vertebrate Vision, J. Biol. Chem., 296, 100072 (2021); https://doi.org/10.1074/jbc.REV120.014405
- N. Gordon, Colour Blindness, Public Health, 112, 81 (1998); https://doi.org/10.1016/S0033-3506(98)00590-3
- M.F. Marmor, Vision, Eye Disease, and Art: 2015 Keeler Lecture, Eye, 30, 287 (2016); https://doi.org/10.1038/eye.2015.197
- D.M. Hunt, K.S. Dulai, J.K. Bowmaker and J.D. Mollon, The Chemistry of John Dalton's Color Blindness, Science, 267, 984 (1995); https://doi.org/10.1126/science.7863342
References
G. Wald, The Molecular Basis of Visual Excitation, Nature, 219, 800 (1968); https://doi.org/10.1038/219800a0
R.R. Rando, The Biochemistry of the Visual Cycle, Chem. Rev., 101, 1881 (2001); https://doi.org/10.1021/cr960141c
H. Kandori, Y. Shichida and T. Yoshizawa, Photoisomerization in Rhodopsin, Biochemistry, 66, 1197 (2001); https://doi.org/10.1023/A:1013123016803
S.O. Smith, Structure and Activation of the Visual Pigment Rhodopsin, Annu. Rev. Biophys., 39, 309 (2010); https://doi.org/10.1146/annurev-biophys-101209-104901
B. Jastrzebska, Y. Tsybovsky and K. Palczewski, Complexes between Photoactivated Rhodopsin and Transducin: Progress and Questions, Biochem. J., 428, 1 (2010); https://doi.org/10.1042/BJ20100270
O.P. Ernst, D.T. Lodowski, M. Elstner, P. Hegemann, L.S. Brown and H. Kandori, Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms, Chem. Rev., 114, 126 (2014); https://doi.org/10.1021/cr4003769
P.D. Kiser, M. Golczak and K. Palczewski, Chemistry of the Retinoid (Visual) Cycle, Chem. Rev., 114, 194 (2014); https://doi.org/10.1021/cr400107q
F. Gonzalez-Fernandez, B. Betts-Obregon, B. Yust, J. Mimun, D. Sung, D. Sardar and A.T. Tsin, Interphotoreceptor Retinoid-Binding Protein Protects Retinoids from Photodegradation, Photochem. Photobiol., 91, 371 (2015); https://doi.org/10.1111/php.12416
C. Schnedermann, X. Yang, M. Liebel, K.M. Spillane, J. Lugtenburg, I. Fernández, A. Valentini, I. Schapiro, M. Olivucci, P. Kukura and R.A. Mathies, Evidence for a Vibrational Phase-Dependent Isotope Effect on the Photochemistry of Vision, Nat. Chem., 10, 449 (2018); https://doi.org/10.1038/s41557-018-0014-y
A. Morshedian, J.J. Kaylor, S.Y. Ng, A. Tsan, R. Frederiksen, T. Xu, L. Yuan, A.P. Sampath, R.A. Radu, G.L. Fain and G.H. Travis, Light-Driven Regeneration of Cone Visual Pigments through a Mechanism Involving RGR Opsin in Müller Glial Cells, Neuron, 102, 1172 (2019); https://doi.org/10.1016/j.neuron.2019.04.004
J. Zhang, E.H. Choi, A. Tworak, D. Salom, H. Leinonen, C.L. Sander, T.V. Hoang, J.T. Handa, S. Blackshaw, G. Palczewska, P.D. Kiser and K. Palczewski, Photic Generation of 11-cis-Retinal in Bovine Retinal Pigment Epithelium, J. Biol. Chem., 294, 19137 (2019); https://doi.org/10.1074/jbc.RA119.011169
E.H. Choi, A. Daruwalla, S. Suh, H. Leinonen and K. Palczewski, Retinoids in the Visual Cycle: Role of the Retinal G Protein-Coupled Receptor, J. Lipid Res., 62, 100040 (2021); https://doi.org/10.1194/jlr.TR120000850
P.D. Kiser, M. Golczak, A. Maeda and K. Palczewski, Key Enzymes of the Retinoid (Visual) Cycle in Vertebrate Retina, Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 1821, 137 (2012); https://doi.org/10.1016/j.bbalip.2011.03.005
A.K. Das, M. Das and A. Das, Biophysical, Bioinorganic & Bioinorganic Chemistry, Books & Allied (P) Ltd.: Kolkata, India, Edn. 2 (2021). ISBN: 978-81-948455-2-2.
U. Satyanaryana, Biochemistry, Books & Allied (P) Ltd.: Kolkata, India, Edn. 2 (2002). ISBN: 81-87134-80-1
T. Ebrey and Y. Koutalos, Vertebrate Photoreceptors, Prog. Retin. Eye Res., 20, 49 (2001); https://doi.org/10.1016/S1350-9462(00)00014-8
D. Mustafi, A.H. Engel and K. Palczewski, Structure of Cone Photoreceptors, Prog. Retin. Eye Res., 28, 289 (2009); https://doi.org/10.1016/j.preteyeres.2009.05.003
M. Yang and H.K.W. Fong, Synthesis of the All-trans-Retinal Chromophore of Retinal G Protein-coupled Receptor Opsin in Cultured Pigment Epithelial Cells, J. Biol. Chem., 277, 3318 (2002); https://doi.org/10.1074/jbc.M108946200
J.K. Bowmaker and H.J. Dartnall, Visual Pigments of Rods and Cones in a Human Retina, J. Physiol., 298, 501 (1980); https://doi.org/10.1113/jphysiol.1980.sp013097
A. Tsin, B. Betts-Obregon and J. Grigsby, Visual Cycle Proteins: Structure, Function and Roles in Human Retinal Disease, J. Biol. Chem., 293, 13016 (2018); https://doi.org/10.1074/jbc.AW118.003228
K. Palczewski and P.D. Kiser, Shedding New Light on the Generation of the Visual Chromophore, Proc. Natl. Acad. Sci. USA, 117, 19629 (2020); https://doi.org/10.1073/pnas.2008211117
J.M. Berg, J.L. Tymoczko and L. Stryer, Biochemistrty, W.H. Freeman and Company: New York, Edn. 7 (2012),
V.Y. Arshavsky, T.D. Lamb and E.N. Pugh Jr., G Proteins and Phototransduction, Annu. Rev. Physiol., 64, 153 (2002); https://doi.org/10.1146/annurev.physiol.64.082701.102229
K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, I.L. Trong, D.C. Teller, T. Okada, R.E. Stenkamp, M. Yamamoto and M. Miyano, Crystal Structure of Rhodopsin: A G Protein-Coupled Receptor, Science, 289, 739 (2000); https://doi.org/10.1126/science.289.5480.739
K. Palczewski, G Protein–Coupled Receptor Rhodopsin, Annu. Rev. Biochem., 75, 743 (2006); https://doi.org/10.1146/annurev.biochem.75.103004.142743
X.E. Zhou, K. Melcher and H.E. Xu, Structure and Activation of Rhodopsin, Acta Pharmacol. Sin., 33, 291 (2012); https://doi.org/10.1038/aps.2011.171
G. Wald and R. Hubbard, The Synthesis of Rhodopsin from Vitamin A1, Proc. Natl. Acad. Sci. USA, 36, 92 (1950); https://doi.org/10.1073/pnas.36.2.92
R. Kawaguchi, J. Yu, J. Honda, J. Hu, J. Whitelegge, P. Ping, P. Wiita, D. Bok and H. Sun, A Membrane Receptor for Retinol Binding Protein Mediates Cellular Uptake of Vitamin A, Science, 315, 820 (2007); https://doi.org/10.1126/science.1136244
J.C. Saari, Vitamin A Metabolism in Rod and Cone Visual Cycles, Annu. Rev. Nutr., 32, 125 (2012); https://doi.org/10.1146/annurev-nutr-071811-150748
J.C. Saari, Eds.: M. Asson-Batres and C. Rochette-Egly, Vitamin A and Vision, The Biochemistry of Retinoid Signaling II; In: Subcellular Biochemistry, Springer, Dordrecht, vol. 81, p. 231 (2016); https://doi.org/10.1007/978-94-024-0945-1_9
H. Tsukamoto and A. Terakita, Diversity and Functional Properties of Bistable Pigments, Photochem. Photobiol. Sci., 9, 1435 (2010); https://doi.org/10.1039/c0pp00168f
D. Osorio and M. Vorobyev, Photoreceptor Sectral Sensitivities in Terrestrial Animals: Adaptations for Luminance and Colour Vision, Proc. R. Soc. B Biol. Sci., 272, 1745 (2005); https://doi.org/10.1098/rspb.2005.3156
T. Mizukami, H. Kandori, Y. Shichida, A.H. Chen, F. Derguini, C.G. Caldwell, C.F. Biffe, K. Nakanishi and T. Yoshizawa, Photoisomerization Mechanism of the Rhodopsin Chromophore: Picosecond Photolysis of Pigment Containing 11-cis-Locked Eight-Membered Ring Retinal, Proc. Natl. Acad. Sci. USA, 90, 4072 (1993); https://doi.org/10.1073/pnas.90.9.4072
J. Clayden, N. Greeves and S. Warren, Organic Chemistry, Oxford University Press, Edn. 2 (2012). ISBN: 978-0-19-927029-3.
H.J.A. Dartnall, The Photosensitivities of Visual Pigments in the Presence of Hydroxylamine, Vision Res., 8, 339 (1968); https://doi.org/10.1016/0042-6989(68)90104-1
R. Frederiksen, S. Nymark, A.V. Kolesnikov, J.D. Berry, L. Adler IV, Y. Koutalos, V.J. Kefalov and M.C. Cornwall, Rhodopsin Kinase and Arrestin Binding Control the Decay of Photoactivated Rhodopsin and Dark Adaptation of Mouse Rods, J. Gen. Physiol., 148, 1 (2016); https://doi.org/10.1085/jgp.201511538
T.D. Lamb and E.N. Pugh Jr., Dark Adaptation and the Retinoid Cycle of Vision, Prog. Retin. Eye Res., 23, 307 (2004); https://doi.org/10.1016/j.preteyeres.2004.03.001
A. Muniz, E.T. Villazana-Espinoza, A.L. Hatch, S.G. Trevino, D.M. Allen and A.T. Tsin, A Novel Cone Visual Cycle in the Cone-dominated Retina, Exp. Eye Res., 85, 175 (2007); https://doi.org/10.1016/j.exer.2007.05.003
A. Muñiz, W.A. Greene, M.L. Plamper, J.H. Choi, A.J. Johnson, A.T. Tsin and H.C. Wang, Retinoid Uptake, Processing, and Secretion in Human iPS-RPE Support the Visual Cycle, Invest. Ophthalmol. Vis. Sci., 55, 198 (2014); https://doi.org/10.1167/iovs.13-11740
A. Muniz, B.S. Betts, A.R. Trevino, K. Buddavarapu, R. Roman, J.X. Ma and A.T. Tsin, Evidence for Two Retinoid Cycles in the Cone-Dominated Chicken Eye, Biochemistry, 48, 6854 (2009); https://doi.org/10.1021/bi9002937
P. Ala-Laurila, A.V. Kolesnikov, R.K. Crouch, S.A. Shukolyukov, E. Tsina, V.I. Govardovskii, Y. Koutalos, B. Wiggert, M.E. Estevez and M.C. Cornwall, Visual Cycle: Dependence of Retinol Production and Removal on Photoproduct Decay and Cell Morphology, J. Gen. Physiol., 128, 153 (2006); https://doi.org/10.1085/jgp.200609557
G. Wolf, The Visual Cycle of the Cone Photoreceptors of the Retina, Nutr. Rev., 62, 283 (2004); https://doi.org/10.1111/j.1753-4887.2004.tb00053.x
J.S. Wang and V.J. Kefalov, The Cone-Specific Visual Cycle, Prog. Retin. Eye Res., 30, 115 (2011); https://doi.org/10.1016/j.preteyeres.2010.11.001
G. Wolf, Function of the Protein Rpe65 in the Visual Cycle, Nutr. Rev., 63, 97 (2005); https://doi.org/10.1111/j.1753-4887.2005.tb00127.x
P.D. Kiser and K. Palczewski, Membrane-Binding and Enzymatic Properties of RPE65, Prog. Retin. Eye Res., 29, 428 (2010); https://doi.org/10.1016/j.preteyeres.2010.03.002
R.A. Radu, J. Hu, J. Peng, D. Bok, N.L. Mata and G.H. Travis, etinal Pigment Epithelium-Retinal G Protein Receptor-Opsin Mediates Light-dependent Translocation of All-trans-retinyl Esters for Synthesis of Visual Chromophore in Retinal Pigment Epithelial Cells, J. Biol. Chem., 283, 19730 (2008); https://doi.org/10.1074/jbc.M801288200
M.L. Batten, Y. Imanishi, T. Maeda, D.C. Tu, A.R. Moise, D. Bronson, D. Possin, R.N. Van Gelder, W. Baehr and K. Palczewski, Lecithin-retinol Acyltransferase Is Essential for Accumulation of All-trans-Retinyl Esters in the Eye and in the Liver, J. Biol. Chem., 279, 10422 (2004); https://doi.org/10.1074/jbc.M312410200
A. Wenzel, V. Oberhauser, E.N. Pugh Jr., T.D. Lamb Jr., C. Grimm, M. Samardzija, E. Fahl, M.W. Seeliger, C.E. Reme and J. von Lintig, The Retinal G Protein-coupled Receptor (RGR) Enhances Isomerohydrolase Activity Independent of Light, J. Biol. Chem., 280, 29874 (2005); https://doi.org/10.1074/jbc.M503603200
M. Jin, S. Li, W.N. Moghrabi, H. Sun and G.H. Travis, Rpe65 Is the Retinoid Isomerase in Bovine Retinal Pigment Epithelium, Cell, 122, 449 (2005); https://doi.org/10.1016/j.cell.2005.06.042
G. Moiseyev, Y. Chen, Y. Takahashi, B. X. Wu and J. X. Ma, RPE65 is the Isomerohydrolase in the Retinoid Visual Cycle, Proc. Natl. Acad. Sci., (USA), 102, 12413 (2005); https://doi.org/10.1073/pnas.0503460102
A.K. Das, M, Das and A. Das, Bioinorganic Chemistry, Books & Allied (P) Ltd, Kolkata, India, Edn. 2 (2020); ISBN: 978-81-946982-1-0.
L. Hofmann and K. Palczewski, Advances in Understanding the Molecular Basis of the First Steps in Color Vision, Prog. Retin. Eye Res., 49, 46 (2015); https://doi.org/10.1016/j.preteyeres.2015.07.004
G.H. Travis, M. Golczak, A.R. Moise and K. Palczewski, Diseases Caused by Defects in the Visual Cycle: Retinoids as Potential Therapeutic Agents, Annu. Rev. Pharmacol. Toxicol., 47, 469 (2007); https://doi.org/10.1146/annurev.pharmtox.47.120505.105225
P.D. Kiser and K. Palczewski, Retinoids and Retinal Diseases, Annu. Rev. Vis. Sci., 2, 197 (2016); https://doi.org/10.1146/annurev-vision-111815-114407
P.D. Kiser and K. Palczewski, Pathways and Disease-Causing Alterations in Visual Chromophore Production for Vertebrate Vision, J. Biol. Chem., 296, 100072 (2021); https://doi.org/10.1074/jbc.REV120.014405
N. Gordon, Colour Blindness, Public Health, 112, 81 (1998); https://doi.org/10.1016/S0033-3506(98)00590-3
M.F. Marmor, Vision, Eye Disease, and Art: 2015 Keeler Lecture, Eye, 30, 287 (2016); https://doi.org/10.1038/eye.2015.197
D.M. Hunt, K.S. Dulai, J.K. Bowmaker and J.D. Mollon, The Chemistry of John Dalton's Color Blindness, Science, 267, 984 (1995); https://doi.org/10.1126/science.7863342