Main Article Content

Abstract

A series of novel 2-aminothiazole derivatives were synthesized by microwave assisted method as a green chemistry approach and characterized by spectral techniques and elemental analysis. The antioxidant potential of the derivatives was determined by using molecular docking against two different oxidoreductase protein (PDB: 2CDU and 3NM8). Compounds 3a and 3d show the stronger binding affinity to the target protein. The synthesized drug was pharmacologically evaluated for the antioxidant activity using ascorbic acid as a reference drug, where compound 3a showed the highest inhibition.

Keywords

Thiazole Microwave assisted synthesis Antioxidant in silico activity Molecular docking.

Article Details

How to Cite
R. Mali, D., Popat Ghuhe, A., Murlidhar Khairnar, N., & Milind Kothawade, S. (2023). In silico Study, Molecular Docking and Synthesis of 2-Amino thiazole Derivatives using Green Chemistry Approach as Antioxidant Agent. Asian Journal of Organic & Medicinal Chemistry, 7(4), 280–286. https://doi.org/10.14233/ajomc.2022.AJOMC-P402

References

  1. A.-M. Borcea, I. Ionu, O. Crisan and O. Oniga, An Overview of the Synthesis and Antimicrobial, Antiprotozoal and Antitumor Activity of Thiazole and Bisthiazole Derivatives, Molecules, 26, 624 (2021); https://doi.org/10.3390/molecules26030624
  2. K.H. Narasimhamurthy, A.M. Sajith, M.N. Joy and K.S. Rangappa, An Overview of Recent Developments in the Synthesis of Substituted Thiazoles, ChemistrySelect, 5, 5629 (2020); https://doi.org/10.1002/slct.202001133
  3. N.H.K. Baba, D. Ashok, B.A. Rao, S. Madderla and N.Y.S. Murthy, Microwave-Assisted Synthesis and Biological Evaluation of Thiazole-Substituted Dibenzofurans, Heterocycl. Commun., 24, 171 (2018); https://doi.org/10.1515/hc-2017-0247
  4. C. Kamoutsis, M. Fesatidou, A. Petrou, A. Geronikaki, V. Poroikov, M. Ivanov, M. Sokovic, A. Ciric, A. Carazo and P. Mladìnka, Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies, Antibiotics, 10, 804 (2021); https://doi.org/10.3390/antibiotics10070804
  5. K. Rao, M. Narender, M. Somi Reddy, V. Kumar, B. Srinivas, R. Sridhar and Y. Nageswar, Aqueous-Phase One-Pot Synthesis of 2-Amino-thiazole- or 2-Aminoselenazole-5-carboxylates from b-Keto Esters, Thio-urea or Selenourea and N-Bromosuccinimide under Supramolecular Catalysis, Synthesis, 22, 3469 (2007); https://doi.org/10.1055/s-2007-990849
  6. Dharmacon, siRNA Applications, pp. 1–9 (2017); http://dharmacon.gelifesciences.com/applications/rna?interference/sirna/
  7. A. Petrou, M. Fesatidou and A. Geronikaki, Thiazole Ring-A Biologically Active Scaffold, Molecules, 26, 3166 (2021); https://doi.org/10.3390/molecules26113166
  8. G.S. Lingaraju, T.R. Swaroop, A.C. Vinayaka, K.S. Sharath Kumar, M.P. Sadashiva and K.S. Rangappa, An Easy Access to 4,5-Disubstituted Thiazoles via Base-Induced Click Reaction of Active Methylene Isocyanides with Methyl Dithiocarboxylates, Synthesis, 44, 1373 (2012); https://doi.org/10.1055/s-0031-1290762
  9. X. Tang, Z. Zhu, C. Qi, W. Wu and H. Jiang, Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Amino-thiazoles, Org. Lett., 18, 180 (2016); https://doi.org/10.1021/acs.orglett.5b03188
  10. X. Wang, X. Qiu, J. Wei, J. Liu, S. Song, W. Wang and N. Jiao, Cu-Catalyzed Aerobic Oxidative Sulfuration/Annulation Approach to Thiazoles via Multiple Csp3–H Bond Cleavage, Org. Lett., 20, 2632 (2018); https://doi.org/10.1021/acs.orglett.8b00840
  11. T.R. Swaroop, K.S. Rangappa, M.P. Sadashiva, K.R. Kiran, N. Rajeev and S.M. Anil, Cyclization of Active Methylene Isocyanides with a-Oxo-dithioesters Induced by Base: An Expedient Synthesis of 4-Methylthio/Ethoxycarbonyl-5-acylthiazoles, Synthesis, 52, 1444 (2020); https://doi.org/10.1055/s-0039-1690821
  12. J.F. Sanz-Cervera, R. Blasco, J. Piera, M. Cynamon, I. Ibáñez, M. Murguía and S. Fustero, Solution versus Fluorous versus Solid-Phase Synthesis of 2,5-Disubstituted 1,3-Azoles. Preliminary Antibacterial Activity Studies, J. Org. Chem., 74, 8988 (2009); https://doi.org/10.1021/jo9016265
  13. M. de Souza, V. Facchinetti, M. Avellar, A. Nery, C. Gomes and T. Vasconcelos, An Eco-friendly, Hantzsch-Based, Solvent-Free Approach to 2-Aminothiazoles and 2-Aminoselenazoles, Synthesis, 48, 437 (2016); https://doi.org/10.1055/s-0035-1560534
  14. T. Miura, Y. Funakoshi, Y. Fujimoto, J. Nakahashi and M. Murakami, Facile Synthesis of 2,5-Disubstituted Thiazoles from Terminal Alkynes, Sulfonyl Azides and Thionoesters, Org. Lett., 17, 2454 (2015); https://doi.org/10.1021/acs.orglett.5b00960
  15. D. Chinnaraja and R. Rajalakshmi, A Facile, Solvent and Catalyst Free, Microwave Assisted One Pot Synthesis of Hydrazinyl Thiazole Derivatives, J. Saudi Chem. Soc., 19, 200 (2015); https://doi.org/10.1016/j.jscs.2014.05.001
  16. M. de Mattos and V. de Andrade, One-Pot Telescoped Synthesis of Thiazole Derivatives from b-Keto Esters and Thioureas Promoted by Tribromoisocyanuric Acid, Synthesis, 50, 4867 (2018); https://doi.org/10.1055/s-0037-1610243
  17. R.G. Fu, Y. Wang, F. Xia, H.L. Zhang, Y. Sun, D.W. Yang, Y.W. Wang and P. Yin, Synthesis of 2-Amino-5-acylthiazoles by a Tertiary Amine-Promoted One-Pot Three-Component Cascade Cyclization Using Elemental Sulfur as a Sulfur Source, J. Org. Chem., 84, 12237 (2019); https://doi.org/10.1021/acs.joc.9b02032
  18. S. Mamidala, S.R. Peddi, R.K. Aravilli, P.C. Jilloju, V. Manga and R.R. Vedula, Microwave Irradiated One Pot, Three Component Synthesis of a New Series of Hybrid Coumarin Based Thiazoles: Antibacterial Evaluation and Molecular Docking Studies, J. Mol. Struct., 1225, 129114 (2021); https://doi.org/10.1016/j.molstruc.2020.129114
  19. A. Chimirri, S. Grasso, A.M. Monforte, P. Monforte, A. Rao, M. Zappalà, G. Bruno, F. Nicolò, C. Pannecouque, M. Witvrouw and E. De Clercq, Synthesis, Structure and in vitro Anti-Human Immunodeficiency Virus Activity of Novel 3-Methyl-1H,3H-Thiazolo[3,4-a]benzimidazoles, Antivir. Chem. Chemother., 9, 431 (1998); https://doi.org/10.1177/095632029800900507
  20. M. Bagheri, M. Shekarchi, M. Jorjani, M.H. Ghahremani, M. Vosooghi and A. Shafiee, Synthesis and Antihypertensive Activity of 1-(2-Thiazolyl)-3,5-disubstituted-2-pyrazolines, Arch. Pharm., 337, 25 (2004); https://doi.org/10.1002/ardp.200300810
  21. E.A. Kesicki, M.A. Bailey, Y. Ovechkina, J.V. Early, T. Alling, J. Bowman, E.S. Zuniga, S. Dalai, N. Kumar, T. Masquelin, P.A. Hipskind, J.O. Odingo and T. Parish, Synthesis and Evaluation of the 2-Amino-thiazoles as Anti-Tubercular Agents, PLoS One, 11, e0155209 (2016); https://doi.org/10.1371/journal.pone.0155209
  22. S.M. Gomha, M.M. Edrees, R.A.M. Faty, Z.A. Muhammad and Y.N. Mabkhot, Microwave-assisted One Pot Three-component Synthesis of Some Novel Pyrazole Scaffolds as Potent Anticancer Agents, Chem. Cent. J., 11, 37 (2017); https://doi.org/10.1186/s13065-017-0266-4
  23. S. Karamthulla, S. Pal, M.N. Khan and L.H. Choudhury, “On-water” Synthesis of Novel Trisubstituted 1,3-thiazoles via Microwave-Assisted Catalyst-Free Domino Reactions, RSC Adv., 4, 37889 (2014); https://doi.org/10.1039/C4RA06239F
  24. J. Costa, R. Ramos, K. Costa, D. Brasil, C. Silva, E. Ferreira, R. Borges, J. Campos, W. Macêdo and C. Santos, An In Silico Study of the Anti-oxidant Ability for Two Caffeine Analogs using Molecular Docking and Quantum Chemical Methods, Molecules, 23, 2801 (2018); https://doi.org/10.3390/molecules23112801
  25. A. Irfan, M. Imran, M. Khalid, M. Sami Ullah, N. Khalid, M.A. Assiri, R. Thomas, S. Muthu, M.A. Raza Basra, M. Hussein, A.G. Al-Sehemi and M. Shahzad, Phenolic and Flavonoid Contents in Malva sylvestris and Exploration of Active Drugs as Antioxidant and Anti-Covid19 by Quantum Chemical and Molecular Docking Studies, J. Saudi Chem. Soc., 25, 101277 (2021); https://doi.org/10.1016/j.jscs.2021.101277
  26. T.D. Patil and S.V. Amrutkar, Design, In silico Screening, Molecular Docking, Synthesis and Biological Evaluation of Benzo-fused Five Membered Nitrogen Containing Heterocycle Against DNA Gyrase Subunit B as Potential Antimicrobial Agent, J. Med. Pharm. Allied Sci., 10, 3016 (2021); https://doi.org/10.22270/jmpas.V10I3.1176
  27. N.M. O'Boyle, M.l Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, Open Babel: An Open Chemical Toolbox, J. Cheminform., 3, 33 (2011); https://doi.org/10.1186/1758-2946-3-33
  28. A.-R. Allouche, Gabedit—A Graphical User Interface for Computational Chemistry Softwares, J. Comput. Chem., 32, 174 (2011); https://doi.org/10.1002/jcc.21600
  29. BIOVIA Discovery Studio, Discovery Studio Modeling Environment. San Diego: Dassault Systèmes (2017).
  30. M.P. de Torre, R.Y. Cavero, M.I. Calvo and J.L.W. Vizmanos, A Simple and a Reliable Method to Quantify Antioxidant Activity in vivo, Antioxidants, 8, 142 (2019); https://doi.org/10.3390/antiox8050142
  31. S. Sehwag and M. Das, Antioxidant Activity: An Overview, J. Food Sci. Technol., 2, 1 (2013).
  32. A.R. Surana, A.N. Aher and S.C. Pal, in vitro and in vivo Antioxidant Activity of Ixora coccinea, J. Med. Plants Res., 7, 3071 (2013).
  33. M. Gjorgjieva, T. Tomašic, M. Barancokova, S. Katsamakas, J. Ilaš, P. Tammela, L.P. Mašic and D. Kikelj, Discovery of Benzothiazole Scaffold-Based DNA Gyrase B Inhibitors, J. Med. Chem., 59, 8941 (2016); https://doi.org/10.1021/acs.jmedchem.6b00864
  34. J.-L. Faulon and A. Bender, Ligand- and Structure-based Virtual Screening, In: Handbook of Chemoinformatics Algorithms, Edn,: 1, Chapman & Hall/CRC, pp. 145-171 (2010).
  35. G. Sliwoski, S. Kothiwale, J. Meiler and E.W. Lowe Jr., Computational Methods in Drug Discovery, Pharmacol. Rev., 66, 334 (2014); https://doi.org/10.1124/pr.112.007336