Main Article Content
Abstract
A series of novel 2-aminothiazole derivatives were synthesized by microwave assisted method as a green chemistry approach and characterized by spectral techniques and elemental analysis. The antioxidant potential of the derivatives was determined by using molecular docking against two different oxidoreductase protein (PDB: 2CDU and 3NM8). Compounds 3a and 3d show the stronger binding affinity to the target protein. The synthesized drug was pharmacologically evaluated for the antioxidant activity using ascorbic acid as a reference drug, where compound 3a showed the highest inhibition.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- A.-M. Borcea, I. Ionu, O. Crisan and O. Oniga, An Overview of the Synthesis and Antimicrobial, Antiprotozoal and Antitumor Activity of Thiazole and Bisthiazole Derivatives, Molecules, 26, 624 (2021); https://doi.org/10.3390/molecules26030624
- K.H. Narasimhamurthy, A.M. Sajith, M.N. Joy and K.S. Rangappa, An Overview of Recent Developments in the Synthesis of Substituted Thiazoles, ChemistrySelect, 5, 5629 (2020); https://doi.org/10.1002/slct.202001133
- N.H.K. Baba, D. Ashok, B.A. Rao, S. Madderla and N.Y.S. Murthy, Microwave-Assisted Synthesis and Biological Evaluation of Thiazole-Substituted Dibenzofurans, Heterocycl. Commun., 24, 171 (2018); https://doi.org/10.1515/hc-2017-0247
- C. Kamoutsis, M. Fesatidou, A. Petrou, A. Geronikaki, V. Poroikov, M. Ivanov, M. Sokovic, A. Ciric, A. Carazo and P. Mladìnka, Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies, Antibiotics, 10, 804 (2021); https://doi.org/10.3390/antibiotics10070804
- K. Rao, M. Narender, M. Somi Reddy, V. Kumar, B. Srinivas, R. Sridhar and Y. Nageswar, Aqueous-Phase One-Pot Synthesis of 2-Amino-thiazole- or 2-Aminoselenazole-5-carboxylates from b-Keto Esters, Thio-urea or Selenourea and N-Bromosuccinimide under Supramolecular Catalysis, Synthesis, 22, 3469 (2007); https://doi.org/10.1055/s-2007-990849
- Dharmacon, siRNA Applications, pp. 1–9 (2017); http://dharmacon.gelifesciences.com/applications/rna?interference/sirna/
- A. Petrou, M. Fesatidou and A. Geronikaki, Thiazole Ring-A Biologically Active Scaffold, Molecules, 26, 3166 (2021); https://doi.org/10.3390/molecules26113166
- G.S. Lingaraju, T.R. Swaroop, A.C. Vinayaka, K.S. Sharath Kumar, M.P. Sadashiva and K.S. Rangappa, An Easy Access to 4,5-Disubstituted Thiazoles via Base-Induced Click Reaction of Active Methylene Isocyanides with Methyl Dithiocarboxylates, Synthesis, 44, 1373 (2012); https://doi.org/10.1055/s-0031-1290762
- X. Tang, Z. Zhu, C. Qi, W. Wu and H. Jiang, Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Amino-thiazoles, Org. Lett., 18, 180 (2016); https://doi.org/10.1021/acs.orglett.5b03188
- X. Wang, X. Qiu, J. Wei, J. Liu, S. Song, W. Wang and N. Jiao, Cu-Catalyzed Aerobic Oxidative Sulfuration/Annulation Approach to Thiazoles via Multiple Csp3–H Bond Cleavage, Org. Lett., 20, 2632 (2018); https://doi.org/10.1021/acs.orglett.8b00840
- T.R. Swaroop, K.S. Rangappa, M.P. Sadashiva, K.R. Kiran, N. Rajeev and S.M. Anil, Cyclization of Active Methylene Isocyanides with a-Oxo-dithioesters Induced by Base: An Expedient Synthesis of 4-Methylthio/Ethoxycarbonyl-5-acylthiazoles, Synthesis, 52, 1444 (2020); https://doi.org/10.1055/s-0039-1690821
- J.F. Sanz-Cervera, R. Blasco, J. Piera, M. Cynamon, I. Ibáñez, M. Murguía and S. Fustero, Solution versus Fluorous versus Solid-Phase Synthesis of 2,5-Disubstituted 1,3-Azoles. Preliminary Antibacterial Activity Studies, J. Org. Chem., 74, 8988 (2009); https://doi.org/10.1021/jo9016265
- M. de Souza, V. Facchinetti, M. Avellar, A. Nery, C. Gomes and T. Vasconcelos, An Eco-friendly, Hantzsch-Based, Solvent-Free Approach to 2-Aminothiazoles and 2-Aminoselenazoles, Synthesis, 48, 437 (2016); https://doi.org/10.1055/s-0035-1560534
- T. Miura, Y. Funakoshi, Y. Fujimoto, J. Nakahashi and M. Murakami, Facile Synthesis of 2,5-Disubstituted Thiazoles from Terminal Alkynes, Sulfonyl Azides and Thionoesters, Org. Lett., 17, 2454 (2015); https://doi.org/10.1021/acs.orglett.5b00960
- D. Chinnaraja and R. Rajalakshmi, A Facile, Solvent and Catalyst Free, Microwave Assisted One Pot Synthesis of Hydrazinyl Thiazole Derivatives, J. Saudi Chem. Soc., 19, 200 (2015); https://doi.org/10.1016/j.jscs.2014.05.001
- M. de Mattos and V. de Andrade, One-Pot Telescoped Synthesis of Thiazole Derivatives from b-Keto Esters and Thioureas Promoted by Tribromoisocyanuric Acid, Synthesis, 50, 4867 (2018); https://doi.org/10.1055/s-0037-1610243
- R.G. Fu, Y. Wang, F. Xia, H.L. Zhang, Y. Sun, D.W. Yang, Y.W. Wang and P. Yin, Synthesis of 2-Amino-5-acylthiazoles by a Tertiary Amine-Promoted One-Pot Three-Component Cascade Cyclization Using Elemental Sulfur as a Sulfur Source, J. Org. Chem., 84, 12237 (2019); https://doi.org/10.1021/acs.joc.9b02032
- S. Mamidala, S.R. Peddi, R.K. Aravilli, P.C. Jilloju, V. Manga and R.R. Vedula, Microwave Irradiated One Pot, Three Component Synthesis of a New Series of Hybrid Coumarin Based Thiazoles: Antibacterial Evaluation and Molecular Docking Studies, J. Mol. Struct., 1225, 129114 (2021); https://doi.org/10.1016/j.molstruc.2020.129114
- A. Chimirri, S. Grasso, A.M. Monforte, P. Monforte, A. Rao, M. Zappalà, G. Bruno, F. Nicolò, C. Pannecouque, M. Witvrouw and E. De Clercq, Synthesis, Structure and in vitro Anti-Human Immunodeficiency Virus Activity of Novel 3-Methyl-1H,3H-Thiazolo[3,4-a]benzimidazoles, Antivir. Chem. Chemother., 9, 431 (1998); https://doi.org/10.1177/095632029800900507
- M. Bagheri, M. Shekarchi, M. Jorjani, M.H. Ghahremani, M. Vosooghi and A. Shafiee, Synthesis and Antihypertensive Activity of 1-(2-Thiazolyl)-3,5-disubstituted-2-pyrazolines, Arch. Pharm., 337, 25 (2004); https://doi.org/10.1002/ardp.200300810
- E.A. Kesicki, M.A. Bailey, Y. Ovechkina, J.V. Early, T. Alling, J. Bowman, E.S. Zuniga, S. Dalai, N. Kumar, T. Masquelin, P.A. Hipskind, J.O. Odingo and T. Parish, Synthesis and Evaluation of the 2-Amino-thiazoles as Anti-Tubercular Agents, PLoS One, 11, e0155209 (2016); https://doi.org/10.1371/journal.pone.0155209
- S.M. Gomha, M.M. Edrees, R.A.M. Faty, Z.A. Muhammad and Y.N. Mabkhot, Microwave-assisted One Pot Three-component Synthesis of Some Novel Pyrazole Scaffolds as Potent Anticancer Agents, Chem. Cent. J., 11, 37 (2017); https://doi.org/10.1186/s13065-017-0266-4
- S. Karamthulla, S. Pal, M.N. Khan and L.H. Choudhury, “On-water” Synthesis of Novel Trisubstituted 1,3-thiazoles via Microwave-Assisted Catalyst-Free Domino Reactions, RSC Adv., 4, 37889 (2014); https://doi.org/10.1039/C4RA06239F
- J. Costa, R. Ramos, K. Costa, D. Brasil, C. Silva, E. Ferreira, R. Borges, J. Campos, W. Macêdo and C. Santos, An In Silico Study of the Anti-oxidant Ability for Two Caffeine Analogs using Molecular Docking and Quantum Chemical Methods, Molecules, 23, 2801 (2018); https://doi.org/10.3390/molecules23112801
- A. Irfan, M. Imran, M. Khalid, M. Sami Ullah, N. Khalid, M.A. Assiri, R. Thomas, S. Muthu, M.A. Raza Basra, M. Hussein, A.G. Al-Sehemi and M. Shahzad, Phenolic and Flavonoid Contents in Malva sylvestris and Exploration of Active Drugs as Antioxidant and Anti-Covid19 by Quantum Chemical and Molecular Docking Studies, J. Saudi Chem. Soc., 25, 101277 (2021); https://doi.org/10.1016/j.jscs.2021.101277
- T.D. Patil and S.V. Amrutkar, Design, In silico Screening, Molecular Docking, Synthesis and Biological Evaluation of Benzo-fused Five Membered Nitrogen Containing Heterocycle Against DNA Gyrase Subunit B as Potential Antimicrobial Agent, J. Med. Pharm. Allied Sci., 10, 3016 (2021); https://doi.org/10.22270/jmpas.V10I3.1176
- N.M. O'Boyle, M.l Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, Open Babel: An Open Chemical Toolbox, J. Cheminform., 3, 33 (2011); https://doi.org/10.1186/1758-2946-3-33
- A.-R. Allouche, Gabedit—A Graphical User Interface for Computational Chemistry Softwares, J. Comput. Chem., 32, 174 (2011); https://doi.org/10.1002/jcc.21600
- BIOVIA Discovery Studio, Discovery Studio Modeling Environment. San Diego: Dassault Systèmes (2017).
- M.P. de Torre, R.Y. Cavero, M.I. Calvo and J.L.W. Vizmanos, A Simple and a Reliable Method to Quantify Antioxidant Activity in vivo, Antioxidants, 8, 142 (2019); https://doi.org/10.3390/antiox8050142
- S. Sehwag and M. Das, Antioxidant Activity: An Overview, J. Food Sci. Technol., 2, 1 (2013).
- A.R. Surana, A.N. Aher and S.C. Pal, in vitro and in vivo Antioxidant Activity of Ixora coccinea, J. Med. Plants Res., 7, 3071 (2013).
- M. Gjorgjieva, T. Tomašic, M. Barancokova, S. Katsamakas, J. Ilaš, P. Tammela, L.P. Mašic and D. Kikelj, Discovery of Benzothiazole Scaffold-Based DNA Gyrase B Inhibitors, J. Med. Chem., 59, 8941 (2016); https://doi.org/10.1021/acs.jmedchem.6b00864
- J.-L. Faulon and A. Bender, Ligand- and Structure-based Virtual Screening, In: Handbook of Chemoinformatics Algorithms, Edn,: 1, Chapman & Hall/CRC, pp. 145-171 (2010).
- G. Sliwoski, S. Kothiwale, J. Meiler and E.W. Lowe Jr., Computational Methods in Drug Discovery, Pharmacol. Rev., 66, 334 (2014); https://doi.org/10.1124/pr.112.007336
References
A.-M. Borcea, I. Ionu, O. Crisan and O. Oniga, An Overview of the Synthesis and Antimicrobial, Antiprotozoal and Antitumor Activity of Thiazole and Bisthiazole Derivatives, Molecules, 26, 624 (2021); https://doi.org/10.3390/molecules26030624
K.H. Narasimhamurthy, A.M. Sajith, M.N. Joy and K.S. Rangappa, An Overview of Recent Developments in the Synthesis of Substituted Thiazoles, ChemistrySelect, 5, 5629 (2020); https://doi.org/10.1002/slct.202001133
N.H.K. Baba, D. Ashok, B.A. Rao, S. Madderla and N.Y.S. Murthy, Microwave-Assisted Synthesis and Biological Evaluation of Thiazole-Substituted Dibenzofurans, Heterocycl. Commun., 24, 171 (2018); https://doi.org/10.1515/hc-2017-0247
C. Kamoutsis, M. Fesatidou, A. Petrou, A. Geronikaki, V. Poroikov, M. Ivanov, M. Sokovic, A. Ciric, A. Carazo and P. Mladìnka, Triazolo Based-Thiadiazole Derivatives. Synthesis, Biological Evaluation and Molecular Docking Studies, Antibiotics, 10, 804 (2021); https://doi.org/10.3390/antibiotics10070804
K. Rao, M. Narender, M. Somi Reddy, V. Kumar, B. Srinivas, R. Sridhar and Y. Nageswar, Aqueous-Phase One-Pot Synthesis of 2-Amino-thiazole- or 2-Aminoselenazole-5-carboxylates from b-Keto Esters, Thio-urea or Selenourea and N-Bromosuccinimide under Supramolecular Catalysis, Synthesis, 22, 3469 (2007); https://doi.org/10.1055/s-2007-990849
Dharmacon, siRNA Applications, pp. 1–9 (2017); http://dharmacon.gelifesciences.com/applications/rna?interference/sirna/
A. Petrou, M. Fesatidou and A. Geronikaki, Thiazole Ring-A Biologically Active Scaffold, Molecules, 26, 3166 (2021); https://doi.org/10.3390/molecules26113166
G.S. Lingaraju, T.R. Swaroop, A.C. Vinayaka, K.S. Sharath Kumar, M.P. Sadashiva and K.S. Rangappa, An Easy Access to 4,5-Disubstituted Thiazoles via Base-Induced Click Reaction of Active Methylene Isocyanides with Methyl Dithiocarboxylates, Synthesis, 44, 1373 (2012); https://doi.org/10.1055/s-0031-1290762
X. Tang, Z. Zhu, C. Qi, W. Wu and H. Jiang, Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Amino-thiazoles, Org. Lett., 18, 180 (2016); https://doi.org/10.1021/acs.orglett.5b03188
X. Wang, X. Qiu, J. Wei, J. Liu, S. Song, W. Wang and N. Jiao, Cu-Catalyzed Aerobic Oxidative Sulfuration/Annulation Approach to Thiazoles via Multiple Csp3–H Bond Cleavage, Org. Lett., 20, 2632 (2018); https://doi.org/10.1021/acs.orglett.8b00840
T.R. Swaroop, K.S. Rangappa, M.P. Sadashiva, K.R. Kiran, N. Rajeev and S.M. Anil, Cyclization of Active Methylene Isocyanides with a-Oxo-dithioesters Induced by Base: An Expedient Synthesis of 4-Methylthio/Ethoxycarbonyl-5-acylthiazoles, Synthesis, 52, 1444 (2020); https://doi.org/10.1055/s-0039-1690821
J.F. Sanz-Cervera, R. Blasco, J. Piera, M. Cynamon, I. Ibáñez, M. Murguía and S. Fustero, Solution versus Fluorous versus Solid-Phase Synthesis of 2,5-Disubstituted 1,3-Azoles. Preliminary Antibacterial Activity Studies, J. Org. Chem., 74, 8988 (2009); https://doi.org/10.1021/jo9016265
M. de Souza, V. Facchinetti, M. Avellar, A. Nery, C. Gomes and T. Vasconcelos, An Eco-friendly, Hantzsch-Based, Solvent-Free Approach to 2-Aminothiazoles and 2-Aminoselenazoles, Synthesis, 48, 437 (2016); https://doi.org/10.1055/s-0035-1560534
T. Miura, Y. Funakoshi, Y. Fujimoto, J. Nakahashi and M. Murakami, Facile Synthesis of 2,5-Disubstituted Thiazoles from Terminal Alkynes, Sulfonyl Azides and Thionoesters, Org. Lett., 17, 2454 (2015); https://doi.org/10.1021/acs.orglett.5b00960
D. Chinnaraja and R. Rajalakshmi, A Facile, Solvent and Catalyst Free, Microwave Assisted One Pot Synthesis of Hydrazinyl Thiazole Derivatives, J. Saudi Chem. Soc., 19, 200 (2015); https://doi.org/10.1016/j.jscs.2014.05.001
M. de Mattos and V. de Andrade, One-Pot Telescoped Synthesis of Thiazole Derivatives from b-Keto Esters and Thioureas Promoted by Tribromoisocyanuric Acid, Synthesis, 50, 4867 (2018); https://doi.org/10.1055/s-0037-1610243
R.G. Fu, Y. Wang, F. Xia, H.L. Zhang, Y. Sun, D.W. Yang, Y.W. Wang and P. Yin, Synthesis of 2-Amino-5-acylthiazoles by a Tertiary Amine-Promoted One-Pot Three-Component Cascade Cyclization Using Elemental Sulfur as a Sulfur Source, J. Org. Chem., 84, 12237 (2019); https://doi.org/10.1021/acs.joc.9b02032
S. Mamidala, S.R. Peddi, R.K. Aravilli, P.C. Jilloju, V. Manga and R.R. Vedula, Microwave Irradiated One Pot, Three Component Synthesis of a New Series of Hybrid Coumarin Based Thiazoles: Antibacterial Evaluation and Molecular Docking Studies, J. Mol. Struct., 1225, 129114 (2021); https://doi.org/10.1016/j.molstruc.2020.129114
A. Chimirri, S. Grasso, A.M. Monforte, P. Monforte, A. Rao, M. Zappalà, G. Bruno, F. Nicolò, C. Pannecouque, M. Witvrouw and E. De Clercq, Synthesis, Structure and in vitro Anti-Human Immunodeficiency Virus Activity of Novel 3-Methyl-1H,3H-Thiazolo[3,4-a]benzimidazoles, Antivir. Chem. Chemother., 9, 431 (1998); https://doi.org/10.1177/095632029800900507
M. Bagheri, M. Shekarchi, M. Jorjani, M.H. Ghahremani, M. Vosooghi and A. Shafiee, Synthesis and Antihypertensive Activity of 1-(2-Thiazolyl)-3,5-disubstituted-2-pyrazolines, Arch. Pharm., 337, 25 (2004); https://doi.org/10.1002/ardp.200300810
E.A. Kesicki, M.A. Bailey, Y. Ovechkina, J.V. Early, T. Alling, J. Bowman, E.S. Zuniga, S. Dalai, N. Kumar, T. Masquelin, P.A. Hipskind, J.O. Odingo and T. Parish, Synthesis and Evaluation of the 2-Amino-thiazoles as Anti-Tubercular Agents, PLoS One, 11, e0155209 (2016); https://doi.org/10.1371/journal.pone.0155209
S.M. Gomha, M.M. Edrees, R.A.M. Faty, Z.A. Muhammad and Y.N. Mabkhot, Microwave-assisted One Pot Three-component Synthesis of Some Novel Pyrazole Scaffolds as Potent Anticancer Agents, Chem. Cent. J., 11, 37 (2017); https://doi.org/10.1186/s13065-017-0266-4
S. Karamthulla, S. Pal, M.N. Khan and L.H. Choudhury, “On-water” Synthesis of Novel Trisubstituted 1,3-thiazoles via Microwave-Assisted Catalyst-Free Domino Reactions, RSC Adv., 4, 37889 (2014); https://doi.org/10.1039/C4RA06239F
J. Costa, R. Ramos, K. Costa, D. Brasil, C. Silva, E. Ferreira, R. Borges, J. Campos, W. Macêdo and C. Santos, An In Silico Study of the Anti-oxidant Ability for Two Caffeine Analogs using Molecular Docking and Quantum Chemical Methods, Molecules, 23, 2801 (2018); https://doi.org/10.3390/molecules23112801
A. Irfan, M. Imran, M. Khalid, M. Sami Ullah, N. Khalid, M.A. Assiri, R. Thomas, S. Muthu, M.A. Raza Basra, M. Hussein, A.G. Al-Sehemi and M. Shahzad, Phenolic and Flavonoid Contents in Malva sylvestris and Exploration of Active Drugs as Antioxidant and Anti-Covid19 by Quantum Chemical and Molecular Docking Studies, J. Saudi Chem. Soc., 25, 101277 (2021); https://doi.org/10.1016/j.jscs.2021.101277
T.D. Patil and S.V. Amrutkar, Design, In silico Screening, Molecular Docking, Synthesis and Biological Evaluation of Benzo-fused Five Membered Nitrogen Containing Heterocycle Against DNA Gyrase Subunit B as Potential Antimicrobial Agent, J. Med. Pharm. Allied Sci., 10, 3016 (2021); https://doi.org/10.22270/jmpas.V10I3.1176
N.M. O'Boyle, M.l Banck, C.A. James, C. Morley, T. Vandermeersch and G.R. Hutchison, Open Babel: An Open Chemical Toolbox, J. Cheminform., 3, 33 (2011); https://doi.org/10.1186/1758-2946-3-33
A.-R. Allouche, Gabedit—A Graphical User Interface for Computational Chemistry Softwares, J. Comput. Chem., 32, 174 (2011); https://doi.org/10.1002/jcc.21600
BIOVIA Discovery Studio, Discovery Studio Modeling Environment. San Diego: Dassault Systèmes (2017).
M.P. de Torre, R.Y. Cavero, M.I. Calvo and J.L.W. Vizmanos, A Simple and a Reliable Method to Quantify Antioxidant Activity in vivo, Antioxidants, 8, 142 (2019); https://doi.org/10.3390/antiox8050142
S. Sehwag and M. Das, Antioxidant Activity: An Overview, J. Food Sci. Technol., 2, 1 (2013).
A.R. Surana, A.N. Aher and S.C. Pal, in vitro and in vivo Antioxidant Activity of Ixora coccinea, J. Med. Plants Res., 7, 3071 (2013).
M. Gjorgjieva, T. Tomašic, M. Barancokova, S. Katsamakas, J. Ilaš, P. Tammela, L.P. Mašic and D. Kikelj, Discovery of Benzothiazole Scaffold-Based DNA Gyrase B Inhibitors, J. Med. Chem., 59, 8941 (2016); https://doi.org/10.1021/acs.jmedchem.6b00864
J.-L. Faulon and A. Bender, Ligand- and Structure-based Virtual Screening, In: Handbook of Chemoinformatics Algorithms, Edn,: 1, Chapman & Hall/CRC, pp. 145-171 (2010).
G. Sliwoski, S. Kothiwale, J. Meiler and E.W. Lowe Jr., Computational Methods in Drug Discovery, Pharmacol. Rev., 66, 334 (2014); https://doi.org/10.1124/pr.112.007336