Main Article Content

Abstract

Schiff bases were synthesized by condensation of the aldehyde group of 5-nitro thiophen-2-carboxaldehyde with different fluoro substituted aromatic primary amines. All the synthesized compounds (3a-c) were characterized by various spectral techniques and the completion of reaction were confirmed by TLC. In vitro antimicrobial activity of the synthesized compounds was evaluated using minimum inhibitory concentration against Gram-positive and Gram-negative microbial strains. The results of antimicrobial study revealed that compounds 3a and 3c were active and exhibited better inhibitory activities as compared with standard drug levofloxacin. The molecular docking studies have higher binding affinity with the receptors enzymes enoyl-ACP reductase. Density functional theory (DFT) calculations at the B3LYP method and 6-31G(d,p) basis set have been carried out to investigate the equilibrium geometry of the ligands. Moreover, total energy, energy of HOMO and LUMO and MEP and other quantum parameters were also calculated. The DFT calculations suggested the lowest energy gap of the studied compounds, which were chemically reactive and may serve as potential drug candidates.

Keywords

Schiff bases Microwave synthesis Fluoro substituted amines 2-Amino thiazole 5-Nitrothiophene-2-carboxaldehye DFT analysis Molecular docking.

Article Details

How to Cite
Kasula, S., & Gyaneshwari, S. (2022). Microwave Assisted Synthesis and Computational Approach of 5-Nitrothiophene-2-carboxaldehyde Derived Schiff Bases as Antibacterial Agents. Asian Journal of Organic & Medicinal Chemistry, 7(3), 273–279. https://doi.org/10.14233/ajomc.2022.AJOMC-P399

References

  1. J.F. Collados, E. Toledano, D. Guijarro and M. Yus, Microwave-Assisted Solvent-Free Synthesis of Enantiomerically Pure N-(tert-Butylsulfinyl)-imines, J. Org. Chem., 77, 5744 (2012); https://doi.org/10.1021/jo300919x
  2. B, Borah, K.D. Dwivedi, B. Kumar and L.R. Chowhan, Recent Advances in the Microwave- and Ultrasound-Assisted Green Synthesis of Coumarin-Heterocycles, Arab. J. Chem., 15, 103654 (2022); https://doi.org/10.1016/j.arabjc.2021.103654
  3. F. Mavandadia and A. Pilotti, The Impact of Microwave-Assisted Organic Synthesis in Drug Discovery, Drug Discov. Today, 11, 165 (2006); https://doi.org/10.1016/S1359-6446(05)03695-0
  4. M. Larhed, C. Moberg and A. Hallberg, Microwave-Accelerated Homogeneous Catalysis in Organic Chemistry, Acc. Chem. Res., 35, 717 (2002); https://doi.org/10.1021/ar010074v
  5. B. Floris, F. Sabuzi, P. Galloni and V. Conte, Catalysts, 7, 261 (2017); https://doi.org/10.3390/catal7090261
  6. M.B. Gawande, S.N. Shelke, R. Zboril and R.S. Varma, Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics, Acc. Chem. Res., 47, 1338 (2014); https://doi.org/10.1021/ar400309b
  7. P. Lidstrom, J. Tierney, B. Wathey and J. Westman, Microwave Assisted Organic Synthesis: A Review, Tetrahedron, 57, 9225 (2001); https://doi.org/10.1016/S0040-4020(01)00906-1
  8. R. Martinez-Palou, Ionic Liquid and Microwave-Assisted Organic Synthesis: A Green and Synergic Couple, J. Mex. Chem. Soc., 51, 252 (2007).
  9. S. Balasubramanian, G. Aridoss, P. Parthiban, C. Ramalingan and S. Kabilan, Synthesis and Biological Evaluation of Novel Benzimidazol/Benzoxazolylethoxypiperidone Oximes, Biol. Pharm. Bull., 29, 125 (2006); https://doi.org/10.1248/bpb.29.125
  10. S. Savithiri, M.A. Doss and R.V. Thanikachalam, Synthesis, Spectral, Stereochemical and Antimicrobial Evaluation of Some 3t-pentyl-2r,6c-diarylpiperidin-4-one Thiosemicarbazone Derivatives, Can. Chem. Trans., 2, 403 (2014).
  11. A.A.A. Abu-Hussen, Synthesis and Spectroscopic Studies on Ternary bis-Schiff-base Complexes having Oxygen and/or Nitrogen Donors, J. Coord. Chem., 59, 157 (2006); https://doi.org/10.1080/00958970500266230
  12. M.S. Karthikeyan, D.J. Prasad, B. Poojary, K. Subrahmanya Bhat, B.S. Holla and N.S. Kumari, Synthesis and Biological Activity of Schiff and Mannich Bases bearing 2,4-Dichloro-5-fluorophenyl Moiety, Bioorg. Med. Chem., 14, 7482 (2006); https://doi.org/10.1016/j.bmc.2006.07.015
  13. K. Singh, M.S. Barwa and P. Tyagi, Synthesis, Characterization and Biological Studies of Co(II), Ni(II), Cu(II) and Zn(II) Complexes with Bidentate Schiff Bases Derived by Heterocyclic Ketone, Eur. J. Med. Chem., 41, 147 (2006); https://doi.org/10.1016/j.ejmech.2005.06.006
  14. N. Bhattacharyya, D. Dutta and J. Biswas, A Review on Synthesis and Biological Activity of Schiff Bases, Indian J. Chem., 40B, 225 (2005).
  15. S.K. Sridhar, M. Saravanan and A. Ramesh, Synthesis and Antibacterial Screening of Hydrazones, Schiff and Mannich Bases of Isatin Derivatives, Eur. J. Med. Chem., 36, 615 (2001); https://doi.org/10.1016/S0223-5234(01)01255-7
  16. S.N. Pandeya, D. Sriram, G. Nath and E. DeClercq, Synthesis, Antibacterial, Antifungal and Anti-HIV Activities of Schiff and Mannich Bases Derived from Isatin Derivatives and N-[4-(4'-chloro-phenyl)-thiazol-2-yl] thiosemicarbazide, Eur. J. Pharm. Sci., 9, 25 (1999); https://doi.org/10.1016/S0928-0987(99)00038-X
  17. R. Mladenova, M. Ignatova, N. Manolova, T. Petrova and I. Rashkov, Preparation, Characterization and Biological Activity of Schiff Base Compounds Derived from 8-Hydroxyquinoline-2-carboxaldehyde and Jeffamines ED®, Eur. Polym. J., 38, 989 (2002); https://doi.org/10.1016/S0014-3057(01)00260-9
  18. O.M. Walsh, M.J. Meegan, R.M. Prendergast and T. Al Nakib, Synthesis of 3-Acetoxyazetidin-2-ones and 3-Hydroxyazetidin-2-ones with Antifungal and Antibacterial Activity, J. Med. Chem., 31, 989 (1996); https://doi.org/10.1016/S0223-5234(97)86178-8
  19. K. Arora and K.P. Sharma, Studies on High-Coordination Complexes of Dioxouranium(VI) sith a Schiff Base, Synth. React. Inorg. Met.-Org. Chem., 32, 913 (2003); https://doi.org/10.1081/SIM-120005611
  20. P.A. Vigato and S. Tamburini, The Challenge of Cyclic and Acyclic Schiff Bases and Related Derivatives, Coord. Chem. Rev., 248, 1717 (2004); https://doi.org/10.1016/j.cct.2003.09.003
  21. T. Katsuki, Catalytic Asymmetric Oxidations using Optically Active (salen)manganese(III) Complexes as Catalysts, Coord. Chem. Rev., 140, 189 (1995); https://doi.org/10.1016/0010-8545(94)01124-T
  22. L.N. de Araújo Neto, M. do Carmo Alves de Lima, J.F. de Oliveira, E.R. de Souza, M.D.S. Buonafina, M.N. Vitor Anjos, F.A. Brayner, L.C. Alves, R.P. Neves and F.J.B. Mendonça-Junior, Synthesis, Cytotoxicity and Antifungal Activity of 5-Nitro-thiophene-thiosemicarbazones Derivatives, Chem. Biol. Interact., 272, 172 (2017); https://doi.org/10.1016/j.cbi.2017.05.005
  23. R.C. Hartkoorn, O.B. Ryabova, L.R. Chiarelli, G. Riccardi, V. Makarov and S.T. Cole, Mechanism of Action of 5-Nitrothiophenes against Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 58, 2944 (2014); https://doi.org/10.1128/AAC.02693-13
  24. A. Foroumadi, Z. Kiani and F. Soltani, Antituberculosis agents VIII: Synthesis and in vitro Antimycobacterial Activity of Alkyl a-[5-(5-Nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetates, Il Farmaco, 58, 1073 (2003); https://doi.org/10.1016/S0014-827X(03)00158-7
  25. J.R. Rodrigues, J. Charris, J. Camacho, A. Barazarte, N. Gamboa and F. Antunes, Cytotoxic Effects of N'-Formyl-2-(5-nitrothiophen-2-yl) benzothiazole-6-carbohydrazide in Human Breast Tumor Cells by Induction of Oxidative Stress, Anticancer Res., 32, 2721 (2012).
  26. K.M. Roque Marques, M.R. do Desterro, S.M. de Arruda, L.N. de Araújo Neto, M. do Carmo Alves de Lima, S.M.V. de Almeida, E.C.D. da Silva, T.M. de Aquino, E.F. da Silva-Júnior, J.X. de Araújo-Júnior, M. de M. Silva, M.D. de A. Dantas, J.C.C. Santos, I.M. Figueiredo, M.-A. Bazin, P. Marchand, T.G. da Silva and F.J.B. Mendonça Junior, 5-Nitro-Thiophene-Thiosemicarbazone Derivatives Present Antitumor Activity Mediated by Apoptosis and DNA Intercalation, Curr. Top. Med. Chem., 19, 1075 (2019); https://doi.org/10.2174/1568026619666190621120304
  27. N. Bharti, K. Husain, M.T. Gonzalez Garza, D.E. Cruz-Vega, J. Castro-Garza, B.D. Mata-Cardenas, F. Naqvi and A. Azam, Synthesis and in vitro Antiprotozoal Activity of 5-Nitrothiophene-2-carboxaldehyde Thiosemicarbazone Derivatives, Bioorg. Med. Chem. Lett., 12, 3475 (2002); https://doi.org/10.1016/S0960-894X(02)00703-5
  28. F. Delmas, M. Gasquet, P. Timon-David, N. Madadi, P. Vanelle, A. Vaille and J. Maldonado, Synthesis and in vitro Anti-protozoan Activity of new 5-Nitrothiophene Oxime Ether Derivatives, Eur. J. Med. Chem., 28, 23 (1993); https://doi.org/10.1016/0223-5234(93)90075-P
  29. A. Tahghighi, S. Emami, S. Razmi, F. Rezazade Marznaki, S. Kabudanian Ardestani, S. Dastmalchi, F. Kobarfard, A. Shafiee and A. Foroumadi, New 5-(Nitroheteroaryl)-1,3,4-thiadiazols containing Acyclic Amines at C-2: Synthesis and SAR Study for their Antileishmanial Activity, J. Enzyme Inhib. Med. Chem., 28, 843 (2013); https://doi.org/10.3109/14756366.2012.689297
  30. P. Sanna, A. Carta, M. Loriga, S. Zanetti and L. Sechi, Synthesis of Substituted 2-Ethoxycarbonyl- and 2-Carboxyquinoxalin-3-ones for Evaluation of Antimicrobial and Anticancer Activity, Il Farmaco, 53, 455 (1998); https://doi.org/10.1016/S0014-827X(98)00044-5