Main Article Content

Abstract

In present study, an efficient and greener protocol is developed for the synthesis of 5-(4-(substituted [1,1′-biphenyl]-4-yl-methoxy)benzyl)-thiazolidine-2,4-diones by using microwave irradiations. Here, a one-pot reaction between 5-(4-((4-bromobenzyl)oxy)benzyl)thiazolidine-2,4-dione, substituted aryl boronic acid and K2CO3 in the presence of toluene:water:ethanol solvents under conventional heating methods and microwave irradiation methods is reported. All the final compounds were characterized by FT-IR, 1H NMR, 13C NMR and mass spectroscopic analysis. The antimicrobial evaluation studies show moderate activities against used microbes.

Keywords

Suzuki coupling reaction Microwave synthesis Antimicrobial activity Thiazolidine-2 4-diones derivatives.

Article Details

How to Cite
Vekariya, M., Bhatt, T., & Joshi, H. (2022). Efficient Synthesis of 5-(4-(Substituted [1,1′-Biphenyl]-4-yl-methoxy)benzyl)thiazolidine-2,4-diones under Microwave Irradiation using Suzuki Coupling Reaction and their Biological Screening. Asian Journal of Organic & Medicinal Chemistry, 7(2), 198–204. https://doi.org/10.14233/ajomc.2022.AJOMC-P388

References

  1. D. Insuasty, J. Castillo, D. Becerra, H. Rojas and R. Abonia, Synthesis of Biologically Active Molecules through Multicomponent Reactions, Molecules, 25, 505 (2020); https://doi.org/10.3390/molecules25030505
  2. K. El-Adl, A.A. El-Helby, H. Sakr, R.R. Ayyad, H.A. Mahdy, M. Nasser, H.S. Abulkhair and S.S.A. El-Hddad, Design, Synthesis, Molecular Docking, Anticancer Evaluations, and in silico Pharmacokinetic Studies of Novel 5-[(4-Chloro/2,4-dichloro)benzylidene]thiazolidine-2,4-dione Derivatives as VEGFR-2 Inhibitors, Arch. Pharm., 354, e2000279 (2021); https://doi.org/10.1002/ardp.202000279
  3. G. Bansal, P.V. Thanikachalam, R.K. Maurya, P. Chawla and S. Ramamurthy, An Overview on Medicinal Perspective of Thiazolidine-2,4-dione: A Remarkable Scaffold in the Treatment of Type 2 Diabetes, J. Adv. Res., 23, 163 (2020); https://doi.org/10.1016/j.jare.2020.01.008
  4. V.S. Jain, D.K. Vora and C.S. Ramaa, Thiazolidine-2,4-diones: Progress Towards Multifarious Applications, Bioorg. Med. Chem., 21, 1599 (2013); https://doi.org/10.1016/j.bmc.2013.01.029
  5. S. Mohanty, G.S. Reddy and A.C. Karmakar, Synthesis of New 5-Substituted–aminomethylene-thiazolidine-2,4-dione Derivatives as Potential Antibacterial Agents, J. Applicable Chem., 3, 82 (2014).
  6. S.N. Nivitabishekam, M. Asad and V.S. Prasad, Pharmacodynamic Interaction of Momordica charantia with Rosiglitazone in Rats, Chem. Biol. Interact., 177, 247 (2009); https://doi.org/10.1016/j.cbi.2008.09.034
  7. S. Shankar and S. Vuppu, In vitro Drug Metabolism and Pharmaco-kinetics of a Novel Thiazolidinedione Derivative, A Potential Anticancer Compound, J. Pharm. Biomed. Anal., 179, 113000 (2020); https://doi.org/10.1016/j.jpba.2019.113000
  8. N. Trotsko, A. Przekora, J. Zalewska, G. Ginalska, A. Paneth and M. Wujec, Synthesis and in vitro Antiproliferative and Antibacterial Activity of New Thiazolidine-2,4-dione Derivatives, J. Enzyme Inhib. Med. Chem., 33, 17 (2018); https://doi.org/10.1080/14756366.2017.1387543
  9. G. Bansal, S. Singh, V. Monga, P.V. Thanikachalam and P. Chawla, Synthesis and Biological Evaluation of Thiazolidine-2,4-dione-pyrazole Conjugates as Antidiabetic, Anti-inflammatory and Antioxidant Agents, Bioorg. Chem., 92, 103271 (2019); https://doi.org/10.1016/j.bioorg.2019.103271
  10. S. Chandrappa, S.B. Benaka Prasad, K. Vinaya, C.S. Ananda Kumar, N.R. Thimmegowda and K.S. Rangappa, Synthesis and in vitro Antiproliferative Activity against Human Cancer Cell Lines of Novel 5-(4-methyl-benzylidene)thiazolidine-2,4-diones, Invest. New Drugs, 26, 437 (2008); https://doi.org/10.1007/s10637-008-9130-7
  11. V.S. Misra and N.S. Agarwal, Potential Anti-viral Compounds. II. Synthesis of Some Aromatic Aldehyde Thiosemicarbazones and Derivatives of 5-carboxymethyl Thiazolidine-2:4-dione, J. Prakt. Chem., 37, 150 (1968); https://doi.org/10.1002/prac.19680370306
  12. M. Nomura, S. Kinoshita, H. Satoh, T. Maeda, K. Murakami, M. Tsunoda, H. Miyachi and K. Awano, (3-Substituted benzyl)thiazolidine-2,4-diones as Structurally New Antihyperglycemic Agents, Bioorg. Med. Chem. Lett., 9, 533 (1999); https://doi.org/10.1016/S0960-894X(99)00039-6
  13. S.R. Atta-Allah, N.S. Ismail and I.F. Nassar, Synthesis, Design and Anti-inflammatory Activity of Novel 5-(Indol-3-yl)thiazolidinone Derivatives as COX-2 Inhibitors, Lett. Drug Des. Discov., 18, 525 (2021); https://doi.org/10.2174/1570180817999201123164201
  14. D.G. Gojiya, M.B. Vekariya, V.H. Kapupara, T.D. Bhatt, P.L. Kalavadiya and H.S. Joshi, Rapid, Simple and Efficient Microwave-Assisted Alkylation of 6-Acetyl-2H-Benzo[e][1,3]oxazine-2, 4(3H )-Dione, ChemistrySelect, 4, 1738 (2019); https://doi.org/10.1002/slct.201803607
  15. B.C. Ranu, A. Saha and R. Jana, Microwave-Assisted Simple and Efficient Ligand Free Copper Nanoparticle Catalyzed Aryl-Sulfur Bond Formation, Adv. Synth. Catal., 349, 2690 (2007); https://doi.org/10.1002/adsc.200700289
  16. B.V. Varun, J. Dhineshkumar, K.R. Bettadapur, Y. Siddaraju, K. Alagiri and K.R. Prabhu, Recent Advancements in Dehydrogenative Cross Coupling Reactions for Csingle Bondc Bond Formation, Tetrahedron Lett., 58, 803 (2017); https://doi.org/10.1016/j.tetlet.2017.01.035
  17. C.T. Yang, Z.Q. Zhang, Y.C. Liu and L. Liu, Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides, Angew. Chem., 123, 3990 (2011); https://doi.org/10.1002/ange.201008007
  18. J.-M. Oh, C.C. Venters, C. Di, A.M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B.R. So, J. Duan and G. Dreyfuss, U1 snRNP Regulates Cancer Cell Migration and Invasion in vitro, Nat. Commun., 11, 1 (2020); https://doi.org/10.1038/s41467-019-13993-7
  19. G. Chatel and R.S. Varma, Ultrasound and Microwave Irradiation: Contributions of Alternative Physicochemical Activation Methods to Green Chemistry, Green Chem., 21, 6043 (2019); https://doi.org/10.1039/C9GC02534K