Main Article Content
Abstract
In present study, an efficient and greener protocol is developed for the synthesis of 5-(4-(substituted [1,1′-biphenyl]-4-yl-methoxy)benzyl)-thiazolidine-2,4-diones by using microwave irradiations. Here, a one-pot reaction between 5-(4-((4-bromobenzyl)oxy)benzyl)thiazolidine-2,4-dione, substituted aryl boronic acid and K2CO3 in the presence of toluene:water:ethanol solvents under conventional heating methods and microwave irradiation methods is reported. All the final compounds were characterized by FT-IR, 1H NMR, 13C NMR and mass spectroscopic analysis. The antimicrobial evaluation studies show moderate activities against used microbes.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- D. Insuasty, J. Castillo, D. Becerra, H. Rojas and R. Abonia, Synthesis of Biologically Active Molecules through Multicomponent Reactions, Molecules, 25, 505 (2020); https://doi.org/10.3390/molecules25030505
- K. El-Adl, A.A. El-Helby, H. Sakr, R.R. Ayyad, H.A. Mahdy, M. Nasser, H.S. Abulkhair and S.S.A. El-Hddad, Design, Synthesis, Molecular Docking, Anticancer Evaluations, and in silico Pharmacokinetic Studies of Novel 5-[(4-Chloro/2,4-dichloro)benzylidene]thiazolidine-2,4-dione Derivatives as VEGFR-2 Inhibitors, Arch. Pharm., 354, e2000279 (2021); https://doi.org/10.1002/ardp.202000279
- G. Bansal, P.V. Thanikachalam, R.K. Maurya, P. Chawla and S. Ramamurthy, An Overview on Medicinal Perspective of Thiazolidine-2,4-dione: A Remarkable Scaffold in the Treatment of Type 2 Diabetes, J. Adv. Res., 23, 163 (2020); https://doi.org/10.1016/j.jare.2020.01.008
- V.S. Jain, D.K. Vora and C.S. Ramaa, Thiazolidine-2,4-diones: Progress Towards Multifarious Applications, Bioorg. Med. Chem., 21, 1599 (2013); https://doi.org/10.1016/j.bmc.2013.01.029
- S. Mohanty, G.S. Reddy and A.C. Karmakar, Synthesis of New 5-Substituted–aminomethylene-thiazolidine-2,4-dione Derivatives as Potential Antibacterial Agents, J. Applicable Chem., 3, 82 (2014).
- S.N. Nivitabishekam, M. Asad and V.S. Prasad, Pharmacodynamic Interaction of Momordica charantia with Rosiglitazone in Rats, Chem. Biol. Interact., 177, 247 (2009); https://doi.org/10.1016/j.cbi.2008.09.034
- S. Shankar and S. Vuppu, In vitro Drug Metabolism and Pharmaco-kinetics of a Novel Thiazolidinedione Derivative, A Potential Anticancer Compound, J. Pharm. Biomed. Anal., 179, 113000 (2020); https://doi.org/10.1016/j.jpba.2019.113000
- N. Trotsko, A. Przekora, J. Zalewska, G. Ginalska, A. Paneth and M. Wujec, Synthesis and in vitro Antiproliferative and Antibacterial Activity of New Thiazolidine-2,4-dione Derivatives, J. Enzyme Inhib. Med. Chem., 33, 17 (2018); https://doi.org/10.1080/14756366.2017.1387543
- G. Bansal, S. Singh, V. Monga, P.V. Thanikachalam and P. Chawla, Synthesis and Biological Evaluation of Thiazolidine-2,4-dione-pyrazole Conjugates as Antidiabetic, Anti-inflammatory and Antioxidant Agents, Bioorg. Chem., 92, 103271 (2019); https://doi.org/10.1016/j.bioorg.2019.103271
- S. Chandrappa, S.B. Benaka Prasad, K. Vinaya, C.S. Ananda Kumar, N.R. Thimmegowda and K.S. Rangappa, Synthesis and in vitro Antiproliferative Activity against Human Cancer Cell Lines of Novel 5-(4-methyl-benzylidene)thiazolidine-2,4-diones, Invest. New Drugs, 26, 437 (2008); https://doi.org/10.1007/s10637-008-9130-7
- V.S. Misra and N.S. Agarwal, Potential Anti-viral Compounds. II. Synthesis of Some Aromatic Aldehyde Thiosemicarbazones and Derivatives of 5-carboxymethyl Thiazolidine-2:4-dione, J. Prakt. Chem., 37, 150 (1968); https://doi.org/10.1002/prac.19680370306
- M. Nomura, S. Kinoshita, H. Satoh, T. Maeda, K. Murakami, M. Tsunoda, H. Miyachi and K. Awano, (3-Substituted benzyl)thiazolidine-2,4-diones as Structurally New Antihyperglycemic Agents, Bioorg. Med. Chem. Lett., 9, 533 (1999); https://doi.org/10.1016/S0960-894X(99)00039-6
- S.R. Atta-Allah, N.S. Ismail and I.F. Nassar, Synthesis, Design and Anti-inflammatory Activity of Novel 5-(Indol-3-yl)thiazolidinone Derivatives as COX-2 Inhibitors, Lett. Drug Des. Discov., 18, 525 (2021); https://doi.org/10.2174/1570180817999201123164201
- D.G. Gojiya, M.B. Vekariya, V.H. Kapupara, T.D. Bhatt, P.L. Kalavadiya and H.S. Joshi, Rapid, Simple and Efficient Microwave-Assisted Alkylation of 6-Acetyl-2H-Benzo[e][1,3]oxazine-2, 4(3H )-Dione, ChemistrySelect, 4, 1738 (2019); https://doi.org/10.1002/slct.201803607
- B.C. Ranu, A. Saha and R. Jana, Microwave-Assisted Simple and Efficient Ligand Free Copper Nanoparticle Catalyzed Aryl-Sulfur Bond Formation, Adv. Synth. Catal., 349, 2690 (2007); https://doi.org/10.1002/adsc.200700289
- B.V. Varun, J. Dhineshkumar, K.R. Bettadapur, Y. Siddaraju, K. Alagiri and K.R. Prabhu, Recent Advancements in Dehydrogenative Cross Coupling Reactions for Csingle Bondc Bond Formation, Tetrahedron Lett., 58, 803 (2017); https://doi.org/10.1016/j.tetlet.2017.01.035
- C.T. Yang, Z.Q. Zhang, Y.C. Liu and L. Liu, Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides, Angew. Chem., 123, 3990 (2011); https://doi.org/10.1002/ange.201008007
- J.-M. Oh, C.C. Venters, C. Di, A.M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B.R. So, J. Duan and G. Dreyfuss, U1 snRNP Regulates Cancer Cell Migration and Invasion in vitro, Nat. Commun., 11, 1 (2020); https://doi.org/10.1038/s41467-019-13993-7
- G. Chatel and R.S. Varma, Ultrasound and Microwave Irradiation: Contributions of Alternative Physicochemical Activation Methods to Green Chemistry, Green Chem., 21, 6043 (2019); https://doi.org/10.1039/C9GC02534K
References
D. Insuasty, J. Castillo, D. Becerra, H. Rojas and R. Abonia, Synthesis of Biologically Active Molecules through Multicomponent Reactions, Molecules, 25, 505 (2020); https://doi.org/10.3390/molecules25030505
K. El-Adl, A.A. El-Helby, H. Sakr, R.R. Ayyad, H.A. Mahdy, M. Nasser, H.S. Abulkhair and S.S.A. El-Hddad, Design, Synthesis, Molecular Docking, Anticancer Evaluations, and in silico Pharmacokinetic Studies of Novel 5-[(4-Chloro/2,4-dichloro)benzylidene]thiazolidine-2,4-dione Derivatives as VEGFR-2 Inhibitors, Arch. Pharm., 354, e2000279 (2021); https://doi.org/10.1002/ardp.202000279
G. Bansal, P.V. Thanikachalam, R.K. Maurya, P. Chawla and S. Ramamurthy, An Overview on Medicinal Perspective of Thiazolidine-2,4-dione: A Remarkable Scaffold in the Treatment of Type 2 Diabetes, J. Adv. Res., 23, 163 (2020); https://doi.org/10.1016/j.jare.2020.01.008
V.S. Jain, D.K. Vora and C.S. Ramaa, Thiazolidine-2,4-diones: Progress Towards Multifarious Applications, Bioorg. Med. Chem., 21, 1599 (2013); https://doi.org/10.1016/j.bmc.2013.01.029
S. Mohanty, G.S. Reddy and A.C. Karmakar, Synthesis of New 5-Substituted–aminomethylene-thiazolidine-2,4-dione Derivatives as Potential Antibacterial Agents, J. Applicable Chem., 3, 82 (2014).
S.N. Nivitabishekam, M. Asad and V.S. Prasad, Pharmacodynamic Interaction of Momordica charantia with Rosiglitazone in Rats, Chem. Biol. Interact., 177, 247 (2009); https://doi.org/10.1016/j.cbi.2008.09.034
S. Shankar and S. Vuppu, In vitro Drug Metabolism and Pharmaco-kinetics of a Novel Thiazolidinedione Derivative, A Potential Anticancer Compound, J. Pharm. Biomed. Anal., 179, 113000 (2020); https://doi.org/10.1016/j.jpba.2019.113000
N. Trotsko, A. Przekora, J. Zalewska, G. Ginalska, A. Paneth and M. Wujec, Synthesis and in vitro Antiproliferative and Antibacterial Activity of New Thiazolidine-2,4-dione Derivatives, J. Enzyme Inhib. Med. Chem., 33, 17 (2018); https://doi.org/10.1080/14756366.2017.1387543
G. Bansal, S. Singh, V. Monga, P.V. Thanikachalam and P. Chawla, Synthesis and Biological Evaluation of Thiazolidine-2,4-dione-pyrazole Conjugates as Antidiabetic, Anti-inflammatory and Antioxidant Agents, Bioorg. Chem., 92, 103271 (2019); https://doi.org/10.1016/j.bioorg.2019.103271
S. Chandrappa, S.B. Benaka Prasad, K. Vinaya, C.S. Ananda Kumar, N.R. Thimmegowda and K.S. Rangappa, Synthesis and in vitro Antiproliferative Activity against Human Cancer Cell Lines of Novel 5-(4-methyl-benzylidene)thiazolidine-2,4-diones, Invest. New Drugs, 26, 437 (2008); https://doi.org/10.1007/s10637-008-9130-7
V.S. Misra and N.S. Agarwal, Potential Anti-viral Compounds. II. Synthesis of Some Aromatic Aldehyde Thiosemicarbazones and Derivatives of 5-carboxymethyl Thiazolidine-2:4-dione, J. Prakt. Chem., 37, 150 (1968); https://doi.org/10.1002/prac.19680370306
M. Nomura, S. Kinoshita, H. Satoh, T. Maeda, K. Murakami, M. Tsunoda, H. Miyachi and K. Awano, (3-Substituted benzyl)thiazolidine-2,4-diones as Structurally New Antihyperglycemic Agents, Bioorg. Med. Chem. Lett., 9, 533 (1999); https://doi.org/10.1016/S0960-894X(99)00039-6
S.R. Atta-Allah, N.S. Ismail and I.F. Nassar, Synthesis, Design and Anti-inflammatory Activity of Novel 5-(Indol-3-yl)thiazolidinone Derivatives as COX-2 Inhibitors, Lett. Drug Des. Discov., 18, 525 (2021); https://doi.org/10.2174/1570180817999201123164201
D.G. Gojiya, M.B. Vekariya, V.H. Kapupara, T.D. Bhatt, P.L. Kalavadiya and H.S. Joshi, Rapid, Simple and Efficient Microwave-Assisted Alkylation of 6-Acetyl-2H-Benzo[e][1,3]oxazine-2, 4(3H )-Dione, ChemistrySelect, 4, 1738 (2019); https://doi.org/10.1002/slct.201803607
B.C. Ranu, A. Saha and R. Jana, Microwave-Assisted Simple and Efficient Ligand Free Copper Nanoparticle Catalyzed Aryl-Sulfur Bond Formation, Adv. Synth. Catal., 349, 2690 (2007); https://doi.org/10.1002/adsc.200700289
B.V. Varun, J. Dhineshkumar, K.R. Bettadapur, Y. Siddaraju, K. Alagiri and K.R. Prabhu, Recent Advancements in Dehydrogenative Cross Coupling Reactions for Csingle Bondc Bond Formation, Tetrahedron Lett., 58, 803 (2017); https://doi.org/10.1016/j.tetlet.2017.01.035
C.T. Yang, Z.Q. Zhang, Y.C. Liu and L. Liu, Copper-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Primary Alkyl Halides and Pseudohalides, Angew. Chem., 123, 3990 (2011); https://doi.org/10.1002/ange.201008007
J.-M. Oh, C.C. Venters, C. Di, A.M. Pinto, L. Wan, I. Younis, Z. Cai, C. Arai, B.R. So, J. Duan and G. Dreyfuss, U1 snRNP Regulates Cancer Cell Migration and Invasion in vitro, Nat. Commun., 11, 1 (2020); https://doi.org/10.1038/s41467-019-13993-7
G. Chatel and R.S. Varma, Ultrasound and Microwave Irradiation: Contributions of Alternative Physicochemical Activation Methods to Green Chemistry, Green Chem., 21, 6043 (2019); https://doi.org/10.1039/C9GC02534K