Main Article Content
Abstract
To synthesize new chemical entities, we have a focus on the aryl or heteroaryl compounds. The current work also relates to the synthesis of pharmaceutical and medicinally active compositions containing these types of compounds and their vast application of treating a wide class of diseases i.e. anticancer, antibacterial, antifungal, antimalarial via administering substituted aryl or heteroaryl compounds. In this work, an efficient synthetic route is developed to explore a wide variety of 1H-1,2,3-triazol-1-yl-N-(4-phenylpyrimidin-2-yl)acetamide derivatives and convergent access a diverse array of triazolo-pyrimidine analogs via click chemistry approach. The structures elucidation was completed by using 1H & 13C NMR, FT-IR, mass spectroscopy, elemental analysis. The developed morpholino-pyrimidine derivatives were further utilized of a diverse range of their chemotherapeutic value.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- H.C. Kolb and K.B. Sharpless, The Growing Impact of Click Chemistry on Drug Discovery, Drug Discov. Today, 8, 1128 (2003); https://doi.org/10.1016/S1359-6446(03)02933-7
- P. Wu, A.K. Feldman, A.K. Nugent, C.J. Hawker, A. Scheel, B. Voit, J. Pyun, J.M.J. Fréchet, K.B. Sharpless and V.V. Fokin, Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes, Angew. Chem., 116, 4018 (2004); https://doi.org/10.1002/ange.200454078
- H. Kolb, M. Finn and K. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x
- H.C. Kolb, M. Finn and K.B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
- R. Dua, S. Shrivastava, S. Sonwane and S. Srivastava, Pharmacological Significance of Synthetic Heterocycles Scaffold: A Review, Adv. Biol. Res., 5, 120 (2011).
- A.F. Pozharskii, A.T. Soldatenkov and A. Katrizky, Heterocycles in Life and Society, An Introduction to Heterocyclic Chemistry and Biochemistry and the Role of Heterocycles in Science, Technology, Medicine and Agriculture, Eur. J. Med. Chem., 11, 842 (1997); https://doi.org/10.1016/S0223-5234(97)82769-9
- B.B. Mishra, D. Kumar, A. Mishra, P.P. Mohapatra and V.K. Tiwari, Cyclo-Release Strategy in Solid-Phase Combinatorial Synthesis of Heterocyclic Skeletons, Chap. 2, Adv. Heterocycl. Chem., 107, 41 (2012); https://doi.org/10.1016/B978-0-12-396532-5.00002-0
- R.K. Arigela, A.K. Mandadapu, S.K. Sharma, B. Kumar and B. Kundu, Cascade Intermolecular Michael Addition–Intramolecular Azide/Internal Alkyne 1,3-Dipolar Cycloaddition Reaction in One Pot, Org. Lett., 14, 1804 (2012); https://doi.org/10.1021/ol300399y
- G. Yi, J. Son, J. Yoo, C. Park and H. Koo, Application of Click Chemistry in Nanoparticle Modification and its Targeted Delivery, Biomater. Res., 22, 13 (2018); https://doi.org/10.1186/s40824-018-0123-0
- J. Kaur, M. Saxena and N. Rishi, An Overview of Recent Advances in Biomedical Applications of Click Chemistry, Bioconjug. Chem., 32, 1455 (2021); https://doi.org/10.1021/acs.bioconjchem.1c00247
- J.E. Hein and V.V. Fokin, Copper-Catalyzed Azide–Alkyne Cyclo-addition (CuAAc) and Beyond: New Reactivity of Copper(I) Acetylides, Chem. Soc. Rev., 39, 1302 (2010); https://doi.org/10.1039/b904091a
- L. Liang and D. Astruc, The Copper(I)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) “Click” Reaction and its Applications. An Overview, Coord. Chem. Rev., 255, 2933 (2011); https://doi.org/10.1016/j.ccr.2011.06.028
- M.J. Giffin, H. Heaslet, A. Brik, Y.-C. Lin, G. Cauvi, C.-H. Wong, D.E. McRee, J.H. Elder, C.D. Stout and B.E. Torbett, A Copper(I)-Catalyzed 1,2,3-Triazole Azide-Alkyne Click Compound is a Potent Inhibitor of a Multidrug-Resistant HIV-1 Protease Variant, J. Med. Chem., 51, 6263 (2008); https://doi.org/10.1021/jm800149m
- R.S. Keri, S.A. Patil, S. Budagumpi and B.M. Nagaraja, Triazole: A Promising Antitubercular Agent, Chem. Biol. Drug Des., 86, 410 (2015); https://doi.org/10.1111/cbdd.12527
- A. Jordão, P.P. Afonso, V.F. Ferreira, M.C.B.V. de Souza, M.C.B. Almeida, C.O. Beltrame, D.P. Paiva, S.M.S.V. Wardell, J.L. Wardell, E.R.T. Tiekink, C.R. Damaso and A.C. Cunha, Antiviral Evaluation of N-Amino-1,2,3-triazoles against Cantagalo Virus Replication in Cell Culture, Eur. J. Med. Chem., 44, 3777 (2009); https://doi.org/10.1016/j.ejmech.2009.04.046
- G. Neves, R. Menegatti, C.B. Antonio, L.R. Grazziottin, R.O. Vieira, S.M.K. Rates, F. Noël, E.J. Barreiro and C.A.M. Fraga, Searching for Multi-Target Antipsychotics: Discovery of Orally Active Heterocyclic N-Phenylpiperazine Ligands of D2-like and 5-HT1A Receptors, Bioorg. Med. Chem., 18, 1925 (2010); https://doi.org/10.1016/j.bmc.2010.01.040
- N.G. Aher, V.S. Pore, N.N. Mishra, A. Kumar, P.K. Shukla, A. Sharma and M.K. Bhat, Synthesis and Antifungal Activity of 1,2,3-triazole containing Fluconazole Analogues, Bioorg. Med. Chem. Lett., 19, 759 (2009); https://doi.org/10.1016/j.bmcl.2008.12.026
- R. Kant, V. Singh, G. Nath, S.K. Awasthi and A. Agarwal, Design, Synthesis and Biological Evaluation of Ciprofloxacin Tethered bis-1,2,3-Triazole Conjugates as Potent Antibacterial Agents, Eur. J. Med. Chem., 124, 218 (2016); https://doi.org/10.1016/j.ejmech.2016.08.031
- Ü.Ö. Özdemir, N. Akkaya and N. Özbek, New Nickel(II), Palladium(II), Platinum(II) Complexes With Aromatic Methanesulfonylhydrazone Based Ligands. Synthesis, Spectroscopic Characterization and in vitro Antibacterial Evaluation, Inorg. Chim. Acta, 400, 13 (2013); https://doi.org/10.1016/j.ica.2013.01.031
- N. Rathee and K.K. Verma, Studies on Nickel(II) and Palladium(II) Complexes with Some Tetraazamacrocycles containing Tellurium, J. Serb. Chem. Soc., 77, 325 (2012); https://doi.org/10.2298/JSC101211200R
- A. Sharma and M.K. Shah, Synthesis¸ Characterization and Biological Activity of Schiff Bases derived from 3-(4-Substituted)-1-phenyl-1H-pyrazole-4-carbaldehyde and o-Aminophenol, Chem. Sci. Trans., 2, 871 (2013).
References
H.C. Kolb and K.B. Sharpless, The Growing Impact of Click Chemistry on Drug Discovery, Drug Discov. Today, 8, 1128 (2003); https://doi.org/10.1016/S1359-6446(03)02933-7
P. Wu, A.K. Feldman, A.K. Nugent, C.J. Hawker, A. Scheel, B. Voit, J. Pyun, J.M.J. Fréchet, K.B. Sharpless and V.V. Fokin, Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes, Angew. Chem., 116, 4018 (2004); https://doi.org/10.1002/ange.200454078
H. Kolb, M. Finn and K. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.3.co;2-x
H.C. Kolb, M. Finn and K.B. Sharpless, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
R. Dua, S. Shrivastava, S. Sonwane and S. Srivastava, Pharmacological Significance of Synthetic Heterocycles Scaffold: A Review, Adv. Biol. Res., 5, 120 (2011).
A.F. Pozharskii, A.T. Soldatenkov and A. Katrizky, Heterocycles in Life and Society, An Introduction to Heterocyclic Chemistry and Biochemistry and the Role of Heterocycles in Science, Technology, Medicine and Agriculture, Eur. J. Med. Chem., 11, 842 (1997); https://doi.org/10.1016/S0223-5234(97)82769-9
B.B. Mishra, D. Kumar, A. Mishra, P.P. Mohapatra and V.K. Tiwari, Cyclo-Release Strategy in Solid-Phase Combinatorial Synthesis of Heterocyclic Skeletons, Chap. 2, Adv. Heterocycl. Chem., 107, 41 (2012); https://doi.org/10.1016/B978-0-12-396532-5.00002-0
R.K. Arigela, A.K. Mandadapu, S.K. Sharma, B. Kumar and B. Kundu, Cascade Intermolecular Michael Addition–Intramolecular Azide/Internal Alkyne 1,3-Dipolar Cycloaddition Reaction in One Pot, Org. Lett., 14, 1804 (2012); https://doi.org/10.1021/ol300399y
G. Yi, J. Son, J. Yoo, C. Park and H. Koo, Application of Click Chemistry in Nanoparticle Modification and its Targeted Delivery, Biomater. Res., 22, 13 (2018); https://doi.org/10.1186/s40824-018-0123-0
J. Kaur, M. Saxena and N. Rishi, An Overview of Recent Advances in Biomedical Applications of Click Chemistry, Bioconjug. Chem., 32, 1455 (2021); https://doi.org/10.1021/acs.bioconjchem.1c00247
J.E. Hein and V.V. Fokin, Copper-Catalyzed Azide–Alkyne Cyclo-addition (CuAAc) and Beyond: New Reactivity of Copper(I) Acetylides, Chem. Soc. Rev., 39, 1302 (2010); https://doi.org/10.1039/b904091a
L. Liang and D. Astruc, The Copper(I)-Catalyzed Alkyne-Azide Cycloaddition (CuAAC) “Click” Reaction and its Applications. An Overview, Coord. Chem. Rev., 255, 2933 (2011); https://doi.org/10.1016/j.ccr.2011.06.028
M.J. Giffin, H. Heaslet, A. Brik, Y.-C. Lin, G. Cauvi, C.-H. Wong, D.E. McRee, J.H. Elder, C.D. Stout and B.E. Torbett, A Copper(I)-Catalyzed 1,2,3-Triazole Azide-Alkyne Click Compound is a Potent Inhibitor of a Multidrug-Resistant HIV-1 Protease Variant, J. Med. Chem., 51, 6263 (2008); https://doi.org/10.1021/jm800149m
R.S. Keri, S.A. Patil, S. Budagumpi and B.M. Nagaraja, Triazole: A Promising Antitubercular Agent, Chem. Biol. Drug Des., 86, 410 (2015); https://doi.org/10.1111/cbdd.12527
A. Jordão, P.P. Afonso, V.F. Ferreira, M.C.B.V. de Souza, M.C.B. Almeida, C.O. Beltrame, D.P. Paiva, S.M.S.V. Wardell, J.L. Wardell, E.R.T. Tiekink, C.R. Damaso and A.C. Cunha, Antiviral Evaluation of N-Amino-1,2,3-triazoles against Cantagalo Virus Replication in Cell Culture, Eur. J. Med. Chem., 44, 3777 (2009); https://doi.org/10.1016/j.ejmech.2009.04.046
G. Neves, R. Menegatti, C.B. Antonio, L.R. Grazziottin, R.O. Vieira, S.M.K. Rates, F. Noël, E.J. Barreiro and C.A.M. Fraga, Searching for Multi-Target Antipsychotics: Discovery of Orally Active Heterocyclic N-Phenylpiperazine Ligands of D2-like and 5-HT1A Receptors, Bioorg. Med. Chem., 18, 1925 (2010); https://doi.org/10.1016/j.bmc.2010.01.040
N.G. Aher, V.S. Pore, N.N. Mishra, A. Kumar, P.K. Shukla, A. Sharma and M.K. Bhat, Synthesis and Antifungal Activity of 1,2,3-triazole containing Fluconazole Analogues, Bioorg. Med. Chem. Lett., 19, 759 (2009); https://doi.org/10.1016/j.bmcl.2008.12.026
R. Kant, V. Singh, G. Nath, S.K. Awasthi and A. Agarwal, Design, Synthesis and Biological Evaluation of Ciprofloxacin Tethered bis-1,2,3-Triazole Conjugates as Potent Antibacterial Agents, Eur. J. Med. Chem., 124, 218 (2016); https://doi.org/10.1016/j.ejmech.2016.08.031
Ü.Ö. Özdemir, N. Akkaya and N. Özbek, New Nickel(II), Palladium(II), Platinum(II) Complexes With Aromatic Methanesulfonylhydrazone Based Ligands. Synthesis, Spectroscopic Characterization and in vitro Antibacterial Evaluation, Inorg. Chim. Acta, 400, 13 (2013); https://doi.org/10.1016/j.ica.2013.01.031
N. Rathee and K.K. Verma, Studies on Nickel(II) and Palladium(II) Complexes with Some Tetraazamacrocycles containing Tellurium, J. Serb. Chem. Soc., 77, 325 (2012); https://doi.org/10.2298/JSC101211200R
A. Sharma and M.K. Shah, Synthesis¸ Characterization and Biological Activity of Schiff Bases derived from 3-(4-Substituted)-1-phenyl-1H-pyrazole-4-carbaldehyde and o-Aminophenol, Chem. Sci. Trans., 2, 871 (2013).